Preparation and Characterization of PEBAX-5513/AgBF4/BMIMBF4 Membranes for Olefin/Paraffin Separation

In this study, we investigated a poly(ether-block-amide)-5513 (PEBAX-5513)/AgBF4/1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) composite membrane, which is expected to have a high stabilizing effect on the Ag+ ions functioning as olefin carriers in the amide group. Poly(ethylene oxide) (PE...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 12; no. 7; p. 1550
Main Authors Kim, So Young, Cho, Younghyun, Kang, Sang Wook
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we investigated a poly(ether-block-amide)-5513 (PEBAX-5513)/AgBF4/1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) composite membrane, which is expected to have a high stabilizing effect on the Ag+ ions functioning as olefin carriers in the amide group. Poly(ethylene oxide) (PEO) only consists of ether regions, whereas the PEBAX-5513 copolymer contains both ether and amide regions. However, given the brittle nature of the amide, the penetration of BMIMBF4 remains challenging. The nanoparticles did not stabilize after their formation in the long-term test, thereby resulting in a poor performance compared to previous experiments using PEO as the polymer (selectivity 3; permeance 12.3 GPU). The properties of the functional groups in the polymers were assessed using Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis, which confirmed that the properties endowed during the production of the film using the ionic liquid can impact the performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12071550