Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems

Advances in optical technology now allow practical reconfigurable wavelength networks to be constructed. These networks use wavelength-switching components to dynamically route wavelengths, and provide a level of flexibility and scalability previously not possible. Other components such as low-noise...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 12; no. 4; pp. 615 - 626
Main Authors Basch, E.B., Egorov, R., Gringeri, S., Elby, S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Advances in optical technology now allow practical reconfigurable wavelength networks to be constructed. These networks use wavelength-switching components to dynamically route wavelengths, and provide a level of flexibility and scalability previously not possible. Other components such as low-noise optical amplifiers, electronic dispersion compensators, and advanced modulation techniques simplify system operation, increase capacity, and extend reach. From an application perspective, the architecture of optical transport networks is evolving based on the requirement to support a higher bandwidth access infrastructure. The network architecture also needs to provide the flexibility to incrementally expand on the basis of customer demand and to provide key features such as optical broadcast to lower the cost of video services. The development of new architectures for optical transport networks and how these networks are influenced by critical system parameters and emerging component technologies is reviewed
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2006.876167