Free radicals formation on thermally decomposed biomass

Pyrolysis provides an attractive alternative for the upgrading of agro-wastes to energy and chemicals. However, consistent quality of the final products is still a goal to be achieved at industrial level. The present study aims at complementing existing results recently published by the authors and...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 255; p. 115802
Main Authors Volpe, Roberto, Bermudez Menendez, José Miguel, Ramirez Reina, Tomas, Volpe, Maurizio, Messineo, Antonio, Millan, Marcos, Titirici, Maria-Magdalena
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pyrolysis provides an attractive alternative for the upgrading of agro-wastes to energy and chemicals. However, consistent quality of the final products is still a goal to be achieved at industrial level. The present study aims at complementing existing results recently published by the authors and investigating the physico-chemical evolution and oxidative reactivity of solid products of pyrolysis of citrus waste. Chars derived from slow pyrolysis (50 °C min−1, 200–650 °C peak temperature) of orange and lemon pulp (OP and LP) in a horizontal batch reactor were characterized by means of Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Electron Paramagnetic Resonance (EPR) and Raman spectroscopy. Results show how the onset of breaking of covalent bonds in matrix is triggered by reaching pyrolysis temperatures of 330–350 °C. Around those temperatures, the population of free-radicals significantly increases on solids and chars become more reactive, thereby favoring retrogressive, recombination and secondary solid-vapor reactions. Results also show that the higher content of lignin on LP may facilitate the formation of aromatic networks via lignin fragmentation and condensation above 500 °C. This trend is also confirmed by DSC patterns in which, above 500 °C, significantly more endothermic reactions occur in LP as a comparison to OP. This conclusion is further corroborated by more pronounced G-band Raman shifts shown for LP as a comparison to OP. The present results shed new light on the thermochemical breakdown of solid agro-wastes and provide insights for development of slow pyrolysis technology toward the production of valuable renewable carbonaceous materials.
ISSN:0016-2361
1873-7153
DOI:10.1016/j.fuel.2019.115802