Matrix Completion With Noise
On the heels of compressed sensing, a new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the pr...
Saved in:
Published in | Proceedings of the IEEE Vol. 98; no. 6; pp. 925 - 936 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | On the heels of compressed sensing, a new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the problem is to recover a matrix from a small sample of its entries. It comes up in many areas of science and engineering, including collaborative filtering, machine learning, control, remote sensing, and computer vision, to name a few. This paper surveys the novel literature on matrix completion, which shows that under some suitable conditions, one can recover an unknown low-rank matrix from a nearly minimal set of entries by solving a simple convex optimization problem, namely, nuclear-norm minimization subject to data constraints. Further, this paper introduces novel results showing that matrix completion is provably accurate even when the few observed entries are corrupted with a small amount of noise. A typical result is that one can recover an unknown matrix of low rank from just about log noisy samples with an error that is proportional to the noise level. We present numerical results that complement our quantitative analysis and show that, in practice, nuclear-norm minimization accurately fills in the many missing entries of large low-rank matrices from just a few noisy samples. Some analogies between matrix completion and compressed sensing are discussed throughout. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/JPROC.2009.2035722 |