Intergranular δ-hydride nucleation and orientation in zirconium alloys

A theoretical understanding of the intergranular δ-hydrides is still lacking, although hydride-related degradation of the mechanical properties of zirconium alloys has been studied for many years. In this paper a thermodynamic model is developed to analyze the nucleation and orientation of intergran...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 59; no. 18; pp. 7010 - 7021
Main Authors Qin, W., Kiran Kumar, N.A.P., Szpunar, J.A., Kozinski, J.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A theoretical understanding of the intergranular δ-hydrides is still lacking, although hydride-related degradation of the mechanical properties of zirconium alloys has been studied for many years. In this paper a thermodynamic model is developed to analyze the nucleation and orientation of intergranular δ-hydrides. The results show that the grain boundary structure and zirconium grain orientation simultaneously govern hydride precipitation. An electron backscatter diffraction study of hydrided Zircaloy-4 provides direct evidence supporting theoretical predictions. A criterion is proposed to reveal the inherent relation between hydride precipitation at the grain boundaries and in the zirconium grains. Stress-induced susceptibility to hydride precipitation at the radial grain boundaries of zirconium alloy tubes is theoretically analyzed. This work provides a general framework based on which the correlation between the grain boundary structure, the grain orientation, the stress and their effects on the nucleation and orientation of the intergranular δ-hydrides can be clarified.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2011.07.054