An Effective Dual Self-Attention Residual Network for Seizure Prediction

As one of the most challenging data analysis tasks in chronic brain diseases, epileptic seizure prediction has attracted extensive attention from many researchers. Seizure prediction, can greatly improve patients' quality of life in many ways, such as preventing accidents and reducing harm that...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1604 - 1613
Main Authors Yang, Xinwu, Zhao, Jiaqi, Sun, Qi, Lu, Jianbo, Ma, Xu
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As one of the most challenging data analysis tasks in chronic brain diseases, epileptic seizure prediction has attracted extensive attention from many researchers. Seizure prediction, can greatly improve patients' quality of life in many ways, such as preventing accidents and reducing harm that may occur during epileptic seizures. This work aims to develop a general method for predicting seizures in specific patients through exploring the time-frequency correlation of features obtained from multi-channel EEG signals. We convert the original EEG signals into spectrograms that represent time-frequency characteristics by applying short-time Fourier transform (STFT) to the EEG signals. For the first time, we propose a dual self-attention residual network (RDANet) that combines a spectrum attention module integrating local features with global features, with a channel attention module mining the interdependence between channel mappings to achieve better forecasting performance. Our proposed approach achieved a sensitivity of 89.33%, a specificity of 93.02%, an AUC of 91.26% and an accuracy of 92.07% on 13 patients from the public CHB-MIT scalp EEG dataset. Our experiments show that different EEG signal prediction segment lengths are an important factor affecting prediction performance. Our proposed method is competitive and achieves good robustness without patient-specific engineering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2021.3103210