Research on machining characteristic of double-layer elastomer in pneumatic wheel method

For improvement of finishing effect to the laser hardening mold’s free-form surface with high hardness, double-layer elastic mechanics theory of pneumatic wheel based with softness consolidation abrasives (SCA) is analyzed. Under the annular stress around, ratio coefficient m of modulus of elasticit...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 92; no. 1-4; pp. 1329 - 1338
Main Authors Zeng, Xi, Li, Jue-hui, Ji, Shi-ming, Ye, Pan, Hang, Wei, Chen, Guo-da
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For improvement of finishing effect to the laser hardening mold’s free-form surface with high hardness, double-layer elastic mechanics theory of pneumatic wheel based with softness consolidation abrasives (SCA) is analyzed. Under the annular stress around, ratio coefficient m of modulus of elasticity of abrasive layer to modulus of rubber layer and ratio coefficient n of thickness of abrasive layer to radius of stress have been bought in for establishing machining force model and deformation formula of double-layer elastic wheel. After that, a double-layer elastic model of the wheel has been established by ANSYS and the machining process has been simulated. Stress distribution and deformation rule are given by simulation. In the experiments, we use fiber to reinforce inner rubber layer and take binder to hold on abrasive particles. Microscopic analysis demonstrates that pneumatic wheel accords with the situation of double-layer elastic mechanic theory. Moreover, machining platform is established and empirical results show that pneumatic wheel can finish laser hardening mold’s free-form surface efficiently. And conclusion shows pneumatic wheel with lower factor n can help to decrease R a when it faces with concave surface and pneumatic wheel with higher factor n can improve machining efficiency to convex surface.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-017-0226-0