Heteroatom doping of two-dimensional materials: From graphene to chalcogenides
[Display omitted] •Doping modifies physico-chemical properties of graphene and dichalcogenides.•Non-metal elements such as N, B, Si, P, and S are the common dopants to graphene.•Semiconducting dichalcogenide dopants include W, Co, Fe, Mn, Nb, Se and S.•Doped 2D materials exhibit improved performance...
Saved in:
Published in | Nano today Vol. 30; p. 100829 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1748-0132 1878-044X |
DOI | 10.1016/j.nantod.2019.100829 |
Cover
Loading…
Abstract | [Display omitted]
•Doping modifies physico-chemical properties of graphene and dichalcogenides.•Non-metal elements such as N, B, Si, P, and S are the common dopants to graphene.•Semiconducting dichalcogenide dopants include W, Co, Fe, Mn, Nb, Se and S.•Doped 2D materials exhibit improved performance as sensors and optoelectronic devices.
In recent years, research on two-dimensional (2D) materials including graphene and transition metal dichalcogenides (TMDCs), especially molybdenum and tungsten disulfides (MoS2 and WS2), has rapidly developed. In order to meet the increasing demands of using these 2D materials in fields as diverse as optoelectronics and sensing, heteroatom doping has become an effective method to tune their electronic and physico-chemical properties. This review discusses versatile doping methods applied to graphene and TMDCs, the corresponding changes to their properties, and their potential applications. Future perspectives and new emerging areas are also presented. |
---|---|
AbstractList | [Display omitted]
•Doping modifies physico-chemical properties of graphene and dichalcogenides.•Non-metal elements such as N, B, Si, P, and S are the common dopants to graphene.•Semiconducting dichalcogenide dopants include W, Co, Fe, Mn, Nb, Se and S.•Doped 2D materials exhibit improved performance as sensors and optoelectronic devices.
In recent years, research on two-dimensional (2D) materials including graphene and transition metal dichalcogenides (TMDCs), especially molybdenum and tungsten disulfides (MoS2 and WS2), has rapidly developed. In order to meet the increasing demands of using these 2D materials in fields as diverse as optoelectronics and sensing, heteroatom doping has become an effective method to tune their electronic and physico-chemical properties. This review discusses versatile doping methods applied to graphene and TMDCs, the corresponding changes to their properties, and their potential applications. Future perspectives and new emerging areas are also presented. |
ArticleNumber | 100829 |
Author | Zhu, Haoyue Lv, Ruitao Terrones, Mauricio McCreary, Amber Gan, Xin Lin, Zhong |
Author_xml | – sequence: 1 givenname: Haoyue surname: Zhu fullname: Zhu, Haoyue organization: Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA – sequence: 2 givenname: Xin surname: Gan fullname: Gan, Xin organization: Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Amber surname: McCreary fullname: McCreary, Amber organization: Department of Physics, Pennsylvania State University, University Park, PA 16802, USA – sequence: 4 givenname: Ruitao surname: Lv fullname: Lv, Ruitao organization: Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Zhong surname: Lin fullname: Lin, Zhong organization: Department of Physics, Pennsylvania State University, University Park, PA 16802, USA – sequence: 6 givenname: Mauricio surname: Terrones fullname: Terrones, Mauricio email: mut11@psu.edu organization: Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wNRkJpmfLgQpthWKbhTchUxyp02ZSUoSFN_elHHlQlf3cDnncO83QxPrLCB0S8mCElreHRdW2uj0Iie0SStS580FmtK6qjPC2Psk6YolTYv8Cs1COBLCeMX4FD1vIYJ3MroBa3cydo9dh-Ony7QZwAbjrOzxIJPJyD4s8don597L0wEs4OiwOsheuT1YoyFco8su2eDmZ87R2_rxdbXNdi-bp9XDLlNFlcdMUc6ULJuatF2r2xLKhresbCQhEkpW0Jw0VUVAck3zlrW0YGWtmWJK18A5L-ZoOfYq70Lw0Alloozp2uil6QUl4kxGHMVIRpzJiJFMCrNf4ZM3g_Rf_8Xuxxikxz4MeBGUAatAGw8qCu3M3wXfJ2-Cpw |
CitedBy_id | crossref_primary_10_1016_j_micrna_2022_207231 crossref_primary_10_1002_cssc_202400999 crossref_primary_10_1002_anie_202115198 crossref_primary_10_1007_s11581_023_05059_y crossref_primary_10_1002_anie_202422740 crossref_primary_10_3390_molecules28010200 crossref_primary_10_1016_j_est_2024_112555 crossref_primary_10_1039_D3CP01145C crossref_primary_10_3390_cryst13020279 crossref_primary_10_1002_ange_202012141 crossref_primary_10_1016_j_mtadv_2021_100169 crossref_primary_10_3390_magnetochemistry8120172 crossref_primary_10_1016_j_cej_2022_136830 crossref_primary_10_1016_j_nantod_2020_101026 crossref_primary_10_1016_j_physb_2024_416225 crossref_primary_10_1016_j_nanoms_2023_12_008 crossref_primary_10_1088_1361_6641_ac2c26 crossref_primary_10_1016_j_apsusc_2022_155336 crossref_primary_10_1016_j_physleta_2022_128351 crossref_primary_10_1002_advs_202101584 crossref_primary_10_1021_acs_jpcc_3c03524 crossref_primary_10_1016_j_physe_2021_114949 crossref_primary_10_1002_smll_202205736 crossref_primary_10_1002_cjoc_202300614 crossref_primary_10_1002_smll_202300336 crossref_primary_10_1016_j_ijoes_2023_100156 crossref_primary_10_1016_j_seppur_2023_124072 crossref_primary_10_1088_1361_6528_ac17c6 crossref_primary_10_1002_ppsc_202100177 crossref_primary_10_1016_j_ccr_2020_213469 crossref_primary_10_1016_j_flatc_2021_100242 crossref_primary_10_1016_j_jechem_2023_10_061 crossref_primary_10_1002_smll_202105877 crossref_primary_10_1039_D2GC00099G crossref_primary_10_3233_MGC_210147 crossref_primary_10_1002_cjoc_202200410 crossref_primary_10_1039_D2TA04061A crossref_primary_10_1016_j_mtchem_2025_102522 crossref_primary_10_1109_JSEN_2021_3104615 crossref_primary_10_1016_j_apsusc_2024_160233 crossref_primary_10_3389_fchem_2024_1425698 crossref_primary_10_1016_j_ijbiomac_2024_133037 crossref_primary_10_1016_j_apsusc_2024_161686 crossref_primary_10_1007_s12274_022_5038_3 crossref_primary_10_1016_j_cej_2023_141607 crossref_primary_10_1002_advs_202305558 crossref_primary_10_1039_D2QI01911F crossref_primary_10_1021_acs_langmuir_1c03379 crossref_primary_10_1002_adfm_202103960 crossref_primary_10_1016_j_ensm_2020_07_027 crossref_primary_10_1038_s41928_022_00802_1 crossref_primary_10_1002_ange_202422740 crossref_primary_10_1016_j_ijhydene_2021_07_229 crossref_primary_10_1021_acsami_4c23080 crossref_primary_10_3389_fmats_2022_1070608 crossref_primary_10_1021_acs_chemrev_4c00174 crossref_primary_10_1039_D4SE01034E crossref_primary_10_1016_j_physb_2024_415728 crossref_primary_10_1016_j_jcis_2023_09_050 crossref_primary_10_1021_acs_chemmater_0c02889 crossref_primary_10_1016_j_cej_2021_133617 crossref_primary_10_1016_j_ceramint_2024_05_143 crossref_primary_10_1039_D1NR00318F crossref_primary_10_1016_j_nantod_2024_102162 crossref_primary_10_1016_j_jpcs_2025_112596 crossref_primary_10_1039_D2TA07203C crossref_primary_10_1021_acsanm_2c04804 crossref_primary_10_1039_D3CP02122J crossref_primary_10_1021_acsami_3c07790 crossref_primary_10_1016_j_mtcomm_2024_109622 crossref_primary_10_1039_D3NR01669B crossref_primary_10_1016_j_apcatb_2021_120964 crossref_primary_10_1016_j_jmmm_2022_169966 crossref_primary_10_1116_6_0001726 crossref_primary_10_1016_j_nanoen_2021_106332 crossref_primary_10_1016_j_ultramic_2021_113420 crossref_primary_10_1021_acsanm_0c01369 crossref_primary_10_1039_D4NR03612C crossref_primary_10_1088_2053_1591_ad1bfd crossref_primary_10_1002_ange_202115198 crossref_primary_10_1021_acsnano_1c03535 crossref_primary_10_1088_2053_1583_ac6c30 crossref_primary_10_1002_advs_202406475 crossref_primary_10_1016_j_jallcom_2022_165343 crossref_primary_10_1002_anie_202012141 crossref_primary_10_1002_er_8477 crossref_primary_10_1088_1361_6528_abd3c8 crossref_primary_10_1039_D3CS00445G crossref_primary_10_1039_D4RA04352A crossref_primary_10_1039_D1DT01834E crossref_primary_10_1016_j_cjph_2024_12_029 crossref_primary_10_1016_j_radphyschem_2022_110051 crossref_primary_10_1016_j_jmmm_2025_172920 crossref_primary_10_1016_j_apcatb_2020_119626 crossref_primary_10_1002_sus2_168 crossref_primary_10_1002_advs_202103036 crossref_primary_10_1016_j_jallcom_2022_163657 crossref_primary_10_1016_j_jpcs_2021_110074 crossref_primary_10_1007_s11144_024_02775_y crossref_primary_10_1016_j_est_2025_115536 crossref_primary_10_1063_5_0048946 crossref_primary_10_1039_D4CS00339J crossref_primary_10_1016_j_jpowsour_2022_231884 crossref_primary_10_3390_appliedchem2030012 crossref_primary_10_1002_adfm_202203115 crossref_primary_10_1021_acscatal_2c03719 crossref_primary_10_1002_adma_202005922 crossref_primary_10_1039_D0DT01676D crossref_primary_10_1039_D3SC00487B crossref_primary_10_1039_D2TA03529D crossref_primary_10_1039_D0EE02649B crossref_primary_10_1080_10408436_2021_1965954 crossref_primary_10_1016_j_chip_2023_100072 crossref_primary_10_1039_D2NR03816A crossref_primary_10_1002_pssr_202400057 crossref_primary_10_1038_s41598_024_57243_3 crossref_primary_10_1002_adfm_202208994 crossref_primary_10_1016_j_cclet_2022_02_044 crossref_primary_10_1016_j_physe_2024_116171 |
Cites_doi | 10.1021/nl803279t 10.1088/0034-4885/75/6/062501 10.1361/15477030522455 10.1038/srep00586 10.1007/BF00608014 10.1021/nn300503e 10.1063/1.4943080 10.1021/nn5015215 10.1016/j.carbon.2012.05.026 10.1021/nl2043612 10.1021/acsami.8b13248 10.1039/C2NR32629A 10.1021/nn4002038 10.1103/PhysRevB.87.195201 10.1002/smll.201102223 10.1021/nn401420h 10.1126/science.1183665 10.1021/cm500086j 10.1002/adma.201304389 10.1016/j.matchemphys.2015.04.005 10.1126/science.1102896 10.1021/acscatal.5b00991 10.1039/c4nr01220h 10.1016/j.calphad.2005.06.002 10.1002/adma.201104798 10.1039/C5TC00563A 10.1063/1.4867197 10.1039/C5RA22664C 10.1016/j.physb.2011.03.044 10.1103/RevModPhys.82.1633 10.1021/acs.nanolett.5b00190 10.1021/nl201874w 10.1126/science.270.5236.590 10.1038/nmat1967 10.1002/adma.201303230 10.1063/1.3464319 10.1021/nl072838r 10.1039/C5CS00151J 10.1021/nl302389d 10.1021/nn505048y 10.1021/nl4032296 10.1021/nn103237x 10.1021/nl5045988 10.1021/jz301673x 10.1016/j.carbon.2015.09.086 10.1039/c3ra22161j 10.1039/C3NR04515C 10.1021/jp3088447 10.1021/nl102661q 10.1002/smll.201302893 10.1016/S0009-2614(01)00534-6 10.1021/nn301728j 10.1002/smll.201203021 10.1021/nn400971k 10.1063/1.4895469 10.1126/science.1156965 10.1021/ja01539a017 10.1021/ja9037593 10.1002/adma.201306095 10.1038/nchem.1589 10.1002/aenm.201100671 10.1007/s003390201278 10.1021/nn5004327 10.1038/srep21536 10.1021/nl3026357 10.1126/science.1208759 10.1140/epjb/e2011-20225-8 10.1039/B917705A 10.1021/jp109002p 10.1021/nl301409h 10.1073/pnas.1505993112 10.1016/j.cplett.2010.04.038 10.1002/adma.201301244 10.1021/am400563g 10.1002/adma.201102584 10.1103/PhysRevB.83.245213 10.1002/cphc.200800592 10.1016/j.ssc.2008.02.024 10.1126/sciadv.1600322 10.1021/nn302422x 10.1039/C5TA10599D 10.1016/j.materresbull.2016.02.009 10.1007/s11669-004-0126-5 10.1021/nl400902v 10.1038/srep01755 10.1038/natrevmats.2016.52 10.1021/jz402375s 10.1021/acs.nanolett.5b02315 10.1103/PhysRevB.88.075420 10.1021/nn503287m 10.1016/j.cattod.2015.08.053 10.1002/smll.201203097 10.1038/nnano.2015.70 10.1021/nl8011566 10.1021/nl8033637 10.1002/smll.201400706 10.1021/nl4043505 10.1080/01614948909351347 10.1073/pnas.0502848102 10.1021/nn200766e 10.1109/TNANO.2007.910334 10.1021/jp106764h 10.1088/0953-8984/26/25/256003 10.1103/PhysRevB.88.144409 10.1038/nature09579 10.1002/adma.201403537 10.1039/C4CS00141A 10.1039/C0JM02922J 10.1049/iet-cds.2015.0149 10.1039/c0jm00467g 10.1080/14686996.2016.1275784 10.1038/s41427-018-0023-8 10.1021/cm302819b 10.1039/C5NR06345K 10.1016/j.calphad.2014.11.004 10.1021/am508843z 10.1126/science.1157996 10.1016/j.jmgm.2012.11.009 10.1021/nl903414x 10.1038/nmat3944 10.1021/acs.chemmater.6b05271 10.1038/nnano.2010.279 10.1103/PhysRevLett.105.136805 10.1039/C4TC00924J 10.1002/smll.200500348 10.1103/PhysRevB.94.075440 10.1039/c3ee41444b 10.1016/j.apsusc.2013.02.035 10.1002/adma.201202255 10.1186/s11671-016-1376-y 10.1021/nl015549q |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nantod.2019.100829 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-044X |
ExternalDocumentID | 10_1016_j_nantod_2019_100829 S1748013219302294 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEFWE AEHWI AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSG SSK SSM SST SSU SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-c154ca6980bfbdb6e695b469a00ae6431209770ea5d12b4b13468d4c4cd8e5553 |
IEDL.DBID | .~1 |
ISSN | 1748-0132 |
IngestDate | Thu Apr 24 22:54:09 EDT 2025 Tue Jul 01 00:15:55 EDT 2025 Fri Feb 23 02:47:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molybdenum disulfide MoS2 Graphene Tungsten disulfide 2D materials WS2 Doping Electronics Sensing TMD Transition metal dichalcogenides Sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-c154ca6980bfbdb6e695b469a00ae6431209770ea5d12b4b13468d4c4cd8e5553 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nantod_2019_100829 crossref_primary_10_1016_j_nantod_2019_100829 elsevier_sciencedirect_doi_10_1016_j_nantod_2019_100829 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Nano today |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (bib0015) 2004; 306 Ling, Xie, Fang, Xu, Zhang, Kong (bib0665) 2010; 10 Zou, Li, Zhu, Zhao, Xu, Su (bib0340) 2011; 81 Li, Huang, Zhong, Huo, Li, Yang (bib0540) 2015; 9 Lin, Thee, Elías, Feng, Zhou, Fujisawa (bib0495) 2014; 2 Cunningham, Lotya, Cucinotta, Sanvito, Bergin, Menzel (bib0175) 2012; 6 Edwards, Coleman (bib0040) 2013; 5 Hu, Cheng, Zhao, Chen, Jiang, Feng (bib0070) 2014; 6 Some, Kim, Lee, Kulkarni, Yoon, Lee (bib0385) 2012; 24 Zhang, Huang, Chen, Chang, Cheng, Li (bib0425) 2013; 25 Novoselov, Jiang, Schedin, Booth, Khotkevich, Morozov (bib0110) 2005; 102 Lv, Li, Botello-Méndez, Hayashi, Wang, Berkdemir (bib0265) 2012; 2 Kim, Fujisawa, Muramatsu, Hayashi, Endo, Fujimori (bib0310) 2012; 6 Gao, Liu, Song, Guo, Gao, Ci (bib0230) 2012; 23 Lu, Bao, Gou, Cai, Ji, Xu (bib0095) 2013; 3 Denis (bib0215) 2010; 492 Ma, Isarraraz, Wang, Preciado, Klee, Bobek (bib0615) 2014; 8 Berkdemir, Gutiérrez, Botello-Méndez, Perea-López, Elías, Chia (bib0145) 2013; 3 Feng, Zhu, Hong, Zhang, Duan, Mao (bib0405) 2014; 26 Czerw, Terrones, Charlier, Blase, Foley, Kamalakaran (bib0245) 2001 Sun, Yan, Yao, Beitler, Zhu, Tour (bib0290) 2010; 468 Zhu, Ramasse, Brorson, Moses, Hansen, Topsøe (bib0535) 2016; 261 Wang, Zhou, Wu, Liao, Zhao, Peng (bib0320) 2013; 9 Mann, Ma, Odenthal, Isarraraz, Le, Preciado (bib0625) 2014; 26 Dai, Yuan, Giannozzi (bib0395) 2009; 95 Zhang, Ye, Yomogida, Takenobu, Iwasa (bib0580) 2013; 13 Eda, Fujita, Yamaguchi, Voiry, Chen, Chhowalla (bib0165) 2012; 6 Lin, Carvalho, Kahn, Lv, Rao, Terrones (bib0200) 2016; 3 Zhang, Lin, Li, Liu, Wu, Xu (bib0355) 2016; 8 Eda, Yamaguchi, Voiry, Fujita, Chen, Chhowalla (bib0160) 2011; 11 Ramasubramaniam, Naveh (bib0560) 2013; 87 Rigosi, Hill, Rim, Flynn, Heinz (bib0485) 2016; 94 Chhowalla, Shin, Eda, Li, Loh, Zhang (bib0125) 2013; 5 Dahn, Zheng, Liu, Xue (bib0005) 1995; 270 Zhang, Li, Wang, Wang, Feng, Zheng (bib0235) 2014; 26 Kuc, Zibouche, Heine (bib0140) 2011; 83 Elías, Perea-López, Castro-Beltrán, Berkdemir, Lv, Feng (bib0465) 2013; 7 Liu, Yu, Neff, Zhamu, Jang (bib0075) 2010; 10 Liu, Liu, Zhu (bib0085) 2011; 21 Lee, Zhang, Zhang, Chang, Lin, Chang (bib0185) 2012; 24 Boyd, Feldman, Transmission, Laland, Richerson, Aoki (bib0035) 2010; 328 Braga, Gutiérrez Lezama, Berger, Morpurgo (bib0135) 2012; 12 Schiros, Nordlund, Pálová, Prezzi, Zhao, Kim (bib0255) 2012; 12 Wang, Li, Chen, Liu, Zhang, Guo (bib0365) 2015; 3 Gupta (bib0440) 2004; 25 Goniszewski, Gallop, Adabi, Gajewski, Shaforost, Klein (bib0220) 2015; 9 Domínguez-Meister, Rojas, Brizuela, Sánchez-López (bib0010) 2017; 18 Wu, Huang, Aivazian, Ross, Cobden, Xu (bib0420) 2013; 7 Ding, Wang, Ni, Shi, Shi, Tang (bib0470) 2011; 406 Ng, Noor, Zheng (bib0725) 2018; 10 Duan, Chen, Jaroniec, Qiao (bib0105) 2015; 5 Agnoli, Favaro (bib0335) 2016; 4 Gao, Song, Guo, Huang, Yang, Wang (bib0280) 2012; 50 Ihm, Lim, Lee, Kwon, Kang, Chung (bib0065) 2010; 97 Dan, Lu, Kybert, Luo, Johnson (bib0635) 2009; 9 Paton, Varrla, Backes, Smith, Khan, O’Neill (bib0170) 2014; 13 Cattelan, Agnoli, Favaro, Garoli, Romanato, Meneghetti (bib0315) 2013; 25 Shinde, Kano, Kalita, Takeguchi, Hashimoto, Tanemura (bib0300) 2016; 96 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (bib0115) 2011; 6 Wang, Sun, Routh, Kim, Huang, Chen (bib0210) 2014; 43 Tedstone, Lewis, Savjani, Zhong, Haigh, O’Brien (bib0510) 2017; 29 Xi, Zhao, Wang, Shuai (bib0480) 2014; 5 Mirabelli, Schmidt, Sheehan, Cherkaoui, Monaghan, Povey (bib0600) 2016; 6 Feng, Dos Santos, Carvalho, Lv, Li, Fujisawa (bib0695) 2016; 2 Zhao, He, Rim, Schiros, Kim, Zhou (bib0275) 2011; 333 Dato, Radmilovic, Lee, Phillips, Frenklach (bib0655) 2008; 8 Li, Cheng, Huang (bib0730) 2018; 14 Lv, Dos Santos, Antonelli, Feng, Fujisawa, Berkdemir (bib0360) 2014; 26 Gong, Liu, Lupini, Shi, Lin, Najmaei (bib0620) 2014; 14 Chen, Liu, Wang, Zhao, Cai, Wang (bib0350) 2013; 5 Zhang, Chen, Zhou, Liu (bib0640) 2009; 20 Lee, Wei, Kysar, Hone (bib0020) 2008; 321 Cheng, Zhu, Mi, Guo, Schwingenschlögl (bib0525) 2013; 87 Cui, Lee, Kim, Arefe, Huang, Lee (bib0155) 2015; 10 Sato, Bergqvist, Kudrnovský, Dederichs, Eriksson, Turek (bib0520) 2010; 82 Chuang, Battaglia, Azcatl, McDonnell, Kang, Yin (bib0585) 2014; 14 Yao, Li, Lin, Moon, Agar, Wong (bib0055) 2011; 115 Mak, Lee, Hone, Shan, Heinz (bib0120) 2010; 105 Faccio, Fernández-Werner, Pardo, Goyenola, Ventura, Mombrú (bib0305) 2010; 114 Wei, Liu, Wang, Zhang, Huang, Yu (bib0260) 2009; 9 Zamudio, Elías, Rodríguez-Manzo, López-Urías, Rodríguez-Gattorno, Lupo (bib0240) 2006; 2 Zhang, Lu, Schulman, Zhang, Fujisawa, Lin (bib0415) 2019; 5 Neto, Guinea, Peres, Novoselov, Geim (bib0080) 2007; 81 Li, Fan, Li, Wang, Zhong, Wei (bib0325) 2012; 2 Chen, Xi, Dumcenco, Liu, Suenaga, Wang (bib0400) 2013; 7 Voiry, Mohite, Chhowalla (bib0130) 2015; 44 Somorjai, De Beer (bib0530) 1989; 31 Mastrapa, da Costa, Larrude, Freire (bib0225) 2015; 166 Liu, Antwi, Chua, Chi (bib0490) 2014; 6 Liu, Chen, Liu, Abbas, Fathi, Zhou (bib0720) 2014; 8 Wang, Liu, Ito, Ning, Tan, Fujita (bib0500) 2016; 6 Liu, Zhang, Lee, Lin, Chang, Su (bib0430) 2012; 12 Fan, An, Guo (bib0555) 2016; 11 Ling, Moura, Pimenta, Zhang (bib0680) 2012; 116 Chhowalla, Jena, Zhang (bib0150) 2016; 1 Jin, Yao, Kittrell, Tour (bib0270) 2011; 5 Xie, Ling, Fang, Zhang, Liu (bib0650) 2009; 131 Rana (bib0660) 2008; 7 Wang, Ko, Huang, Lin, Huang (bib0550) 2014; 53 Chen, Yang, Liu, Zhao, Cai, Wang (bib0345) 2013; 39 Waldner, Pelton (bib0450) 2005; 26 Lee, Gatensby, McEvoy, Hallam, Duesberg (bib0715) 2013; 25 Qi, Li, Chen, Hu (bib0570) 2014; 26 Xu, Mao, Zhang (bib0690) 2013; 9 Das, Demarteau, Roelofs (bib0595) 2015; 106 Zhang, Yang, Shen, Cheng, Zhang, Guo (bib0045) 2010; 46 Katoh, Imamura, Obata, Saiki (bib0285) 2016; 6 Komsa, Krasheninnikov (bib0475) 2012; 3 Xue, Wu, Bao, Liu (bib0205) 2014; 10 Dolui, Rungger, Das Pemmaraju, Sanvito (bib0590) 2013; 88 Chen, Hou, Shi, Pan (bib0735) 2018; 10 Shu, Luo, Liang, Cao, Chen (bib0545) 2015; 7 Shatynski (bib0460) 1977; 11 Schedin, Geim, Morozov, Hill, Blake, Katsnelson (bib0630) 2007; 6 Terrones, Ajayan, Banhart, Blase, Carroll, Charlier (bib0250) 2002; 74 Zhang, Feng, Wang, Azcatl, Lu, Addou (bib0575) 2015; 15 Ling, Wu, Xu, Zhang (bib0670) 2012; 8 Dai, Yuan (bib0375) 2010; 22 Bolotin, Sikes, Jiang, Klima, Fudenberg, Hone (bib0025) 2008; 146 Terrones, Lv, Terrones, Dresselhaus (bib0195) 2012; 75 Zhu, Hsu, Terrones, Firth, Grobert, Clark, Kroto, Walton (bib0605) 2001; 342 Shin, Kim, Yoo (bib0380) 2015; 82 Feng, Cristina dos Santos, Carvalho, Lv, Li, Fujisawa (bib0700) 2016; 2 Nair, Blake, Grigorenko, Novoselov, Booth, Stauber (bib0030) 2008; 320 Mishra, Zhou, Pennycook, Pantelides, Idrobo (bib0565) 2013; 88 Imran Jafri, Rajalakshmi, Ramaprabhu (bib0090) 2010; 20 Lv, Chen, Li, Botello-méndez, Morozov, Declerck (bib0330) 2015; 112 Song, Ryu, Lee, Sim, Lee, Choi (bib0515) 2015; 6 Wang, Zhi, Müllen (bib0060) 2008; 8 Su, Te Hsu, Chang, Chiu, Hsu, Hsu (bib0610) 2014; 10 Wang, Wang, Chen, Liu, Zhao, Cai (bib0370) 2013; 273 Liu, Wu, Yu, Chen, Huang, Jiang (bib0505) 2017; 27 Houserová, Vřešťál, Šob (bib0435) 2005; 29 Paraknowitsch, Thomas (bib0100) 2013; 6 Wang, Li, Chen, Liu, Tian, Zhou (bib0295) 2014; 2 Chang, Zhang, Zhu, Han, Pu, Chang (bib0705) 2014; 8 Domask, Gurunathan, Mohney (bib0445) 2015; 44 Huang, Ling, Liang, Song, Fang, Zhang (bib0685) 2015; 15 Klee, Preciado, Barroso, Nguyen, Lee, Erickson (bib0710) 2015; 15 Denis, Faccio, Mombru (bib0390) 2009; 10 Hummers, Offeman (bib0050) 1958; 80 Dai, Yuan, Giannozzi, Dai, Yuan, Giannozzi (bib0645) 2009; 232105 Gutiérrez, Perea-López, Elías, Berkdemir, Wang, Lv (bib0190) 2013; 13 Dilner, Mao, Selleby (bib0455) 2015; 48 Xu, Xie, Zhang, Zhang (bib0675) 2011; 5 Laskar, Nath, Ma, Lee, Lee, Kent (bib0410) 2014; 104 Smith, King, Lotya, Wirtz, Khan, De (bib0180) 2011; 23 Bolotin (10.1016/j.nantod.2019.100829_bib0025) 2008; 146 Tedstone (10.1016/j.nantod.2019.100829_bib0510) 2017; 29 Xie (10.1016/j.nantod.2019.100829_bib0650) 2009; 131 Song (10.1016/j.nantod.2019.100829_bib0515) 2015; 6 Wang (10.1016/j.nantod.2019.100829_bib0210) 2014; 43 Elías (10.1016/j.nantod.2019.100829_bib0465) 2013; 7 Wang (10.1016/j.nantod.2019.100829_bib0320) 2013; 9 Ding (10.1016/j.nantod.2019.100829_bib0470) 2011; 406 Klee (10.1016/j.nantod.2019.100829_bib0710) 2015; 15 Dilner (10.1016/j.nantod.2019.100829_bib0455) 2015; 48 Shin (10.1016/j.nantod.2019.100829_bib0380) 2015; 82 Lin (10.1016/j.nantod.2019.100829_bib0200) 2016; 3 Liu (10.1016/j.nantod.2019.100829_bib0720) 2014; 8 Nair (10.1016/j.nantod.2019.100829_bib0030) 2008; 320 Xue (10.1016/j.nantod.2019.100829_bib0205) 2014; 10 Voiry (10.1016/j.nantod.2019.100829_bib0130) 2015; 44 Yao (10.1016/j.nantod.2019.100829_bib0055) 2011; 115 Zhao (10.1016/j.nantod.2019.100829_bib0275) 2011; 333 Zou (10.1016/j.nantod.2019.100829_bib0340) 2011; 81 Mirabelli (10.1016/j.nantod.2019.100829_bib0600) 2016; 6 Chen (10.1016/j.nantod.2019.100829_bib0345) 2013; 39 Domask (10.1016/j.nantod.2019.100829_bib0445) 2015; 44 Zhang (10.1016/j.nantod.2019.100829_bib0425) 2013; 25 Liu (10.1016/j.nantod.2019.100829_bib0505) 2017; 27 Dai (10.1016/j.nantod.2019.100829_bib0395) 2009; 95 Zhu (10.1016/j.nantod.2019.100829_bib0605) 2001; 342 Faccio (10.1016/j.nantod.2019.100829_bib0305) 2010; 114 Berkdemir (10.1016/j.nantod.2019.100829_bib0145) 2013; 3 Goniszewski (10.1016/j.nantod.2019.100829_bib0220) 2015; 9 Zhang (10.1016/j.nantod.2019.100829_bib0235) 2014; 26 Rigosi (10.1016/j.nantod.2019.100829_bib0485) 2016; 94 Cheng (10.1016/j.nantod.2019.100829_bib0525) 2013; 87 Gao (10.1016/j.nantod.2019.100829_bib0230) 2012; 23 Li (10.1016/j.nantod.2019.100829_bib0730) 2018; 14 Chen (10.1016/j.nantod.2019.100829_bib0735) 2018; 10 Sun (10.1016/j.nantod.2019.100829_bib0290) 2010; 468 Wang (10.1016/j.nantod.2019.100829_bib0500) 2016; 6 Lee (10.1016/j.nantod.2019.100829_bib0185) 2012; 24 Chhowalla (10.1016/j.nantod.2019.100829_bib0125) 2013; 5 Chhowalla (10.1016/j.nantod.2019.100829_bib0150) 2016; 1 Dan (10.1016/j.nantod.2019.100829_bib0635) 2009; 9 Eda (10.1016/j.nantod.2019.100829_bib0160) 2011; 11 Zamudio (10.1016/j.nantod.2019.100829_bib0240) 2006; 2 Zhang (10.1016/j.nantod.2019.100829_bib0355) 2016; 8 Imran Jafri (10.1016/j.nantod.2019.100829_bib0090) 2010; 20 Li (10.1016/j.nantod.2019.100829_bib0325) 2012; 2 Zhang (10.1016/j.nantod.2019.100829_bib0045) 2010; 46 Wang (10.1016/j.nantod.2019.100829_bib0060) 2008; 8 Liu (10.1016/j.nantod.2019.100829_bib0430) 2012; 12 Radisavljevic (10.1016/j.nantod.2019.100829_bib0115) 2011; 6 Kuc (10.1016/j.nantod.2019.100829_bib0140) 2011; 83 Shatynski (10.1016/j.nantod.2019.100829_bib0460) 1977; 11 Zhang (10.1016/j.nantod.2019.100829_bib0640) 2009; 20 Gupta (10.1016/j.nantod.2019.100829_bib0440) 2004; 25 Chuang (10.1016/j.nantod.2019.100829_bib0585) 2014; 14 Lv (10.1016/j.nantod.2019.100829_bib0265) 2012; 2 Ling (10.1016/j.nantod.2019.100829_bib0665) 2010; 10 Wang (10.1016/j.nantod.2019.100829_bib0295) 2014; 2 Laskar (10.1016/j.nantod.2019.100829_bib0410) 2014; 104 Houserová (10.1016/j.nantod.2019.100829_bib0435) 2005; 29 Paton (10.1016/j.nantod.2019.100829_bib0170) 2014; 13 Cunningham (10.1016/j.nantod.2019.100829_bib0175) 2012; 6 Schedin (10.1016/j.nantod.2019.100829_bib0630) 2007; 6 Xi (10.1016/j.nantod.2019.100829_bib0480) 2014; 5 Denis (10.1016/j.nantod.2019.100829_bib0390) 2009; 10 Cattelan (10.1016/j.nantod.2019.100829_bib0315) 2013; 25 Mak (10.1016/j.nantod.2019.100829_bib0120) 2010; 105 Lee (10.1016/j.nantod.2019.100829_bib0020) 2008; 321 Terrones (10.1016/j.nantod.2019.100829_bib0195) 2012; 75 Schiros (10.1016/j.nantod.2019.100829_bib0255) 2012; 12 Duan (10.1016/j.nantod.2019.100829_bib0105) 2015; 5 Dai (10.1016/j.nantod.2019.100829_bib0375) 2010; 22 Katoh (10.1016/j.nantod.2019.100829_bib0285) 2016; 6 Paraknowitsch (10.1016/j.nantod.2019.100829_bib0100) 2013; 6 Czerw (10.1016/j.nantod.2019.100829_bib0245) 2001 Boyd (10.1016/j.nantod.2019.100829_bib0035) 2010; 328 Waldner (10.1016/j.nantod.2019.100829_bib0450) 2005; 26 Lv (10.1016/j.nantod.2019.100829_bib0360) 2014; 26 Lin (10.1016/j.nantod.2019.100829_bib0495) 2014; 2 Fan (10.1016/j.nantod.2019.100829_bib0555) 2016; 11 Gao (10.1016/j.nantod.2019.100829_bib0280) 2012; 50 Feng (10.1016/j.nantod.2019.100829_bib0695) 2016; 2 Agnoli (10.1016/j.nantod.2019.100829_bib0335) 2016; 4 Ling (10.1016/j.nantod.2019.100829_bib0680) 2012; 116 Kim (10.1016/j.nantod.2019.100829_bib0310) 2012; 6 Shu (10.1016/j.nantod.2019.100829_bib0545) 2015; 7 Ng (10.1016/j.nantod.2019.100829_bib0725) 2018; 10 Domínguez-Meister (10.1016/j.nantod.2019.100829_bib0010) 2017; 18 Eda (10.1016/j.nantod.2019.100829_bib0165) 2012; 6 Wei (10.1016/j.nantod.2019.100829_bib0260) 2009; 9 Huang (10.1016/j.nantod.2019.100829_bib0685) 2015; 15 Su (10.1016/j.nantod.2019.100829_bib0610) 2014; 10 Terrones (10.1016/j.nantod.2019.100829_bib0250) 2002; 74 Rana (10.1016/j.nantod.2019.100829_bib0660) 2008; 7 Qi (10.1016/j.nantod.2019.100829_bib0570) 2014; 26 Komsa (10.1016/j.nantod.2019.100829_bib0475) 2012; 3 Gutiérrez (10.1016/j.nantod.2019.100829_bib0190) 2013; 13 Shinde (10.1016/j.nantod.2019.100829_bib0300) 2016; 96 Chen (10.1016/j.nantod.2019.100829_bib0400) 2013; 7 Chang (10.1016/j.nantod.2019.100829_bib0705) 2014; 8 Novoselov (10.1016/j.nantod.2019.100829_bib0110) 2005; 102 Wu (10.1016/j.nantod.2019.100829_bib0420) 2013; 7 Ling (10.1016/j.nantod.2019.100829_bib0670) 2012; 8 Lee (10.1016/j.nantod.2019.100829_bib0715) 2013; 25 Zhang (10.1016/j.nantod.2019.100829_bib0580) 2013; 13 Mann (10.1016/j.nantod.2019.100829_bib0625) 2014; 26 Liu (10.1016/j.nantod.2019.100829_bib0085) 2011; 21 Mastrapa (10.1016/j.nantod.2019.100829_bib0225) 2015; 166 Novoselov (10.1016/j.nantod.2019.100829_bib0015) 2004; 306 Smith (10.1016/j.nantod.2019.100829_bib0180) 2011; 23 Some (10.1016/j.nantod.2019.100829_bib0385) 2012; 24 Neto (10.1016/j.nantod.2019.100829_bib0080) 2007; 81 Jin (10.1016/j.nantod.2019.100829_bib0270) 2011; 5 Hummers (10.1016/j.nantod.2019.100829_bib0050) 1958; 80 Feng (10.1016/j.nantod.2019.100829_bib0405) 2014; 26 Edwards (10.1016/j.nantod.2019.100829_bib0040) 2013; 5 Hu (10.1016/j.nantod.2019.100829_bib0070) 2014; 6 Lv (10.1016/j.nantod.2019.100829_bib0330) 2015; 112 Das (10.1016/j.nantod.2019.100829_bib0595) 2015; 106 Gong (10.1016/j.nantod.2019.100829_bib0620) 2014; 14 Braga (10.1016/j.nantod.2019.100829_bib0135) 2012; 12 Dahn (10.1016/j.nantod.2019.100829_bib0005) 1995; 270 Ihm (10.1016/j.nantod.2019.100829_bib0065) 2010; 97 Wang (10.1016/j.nantod.2019.100829_bib0550) 2014; 53 Mishra (10.1016/j.nantod.2019.100829_bib0565) 2013; 88 Ramasubramaniam (10.1016/j.nantod.2019.100829_bib0560) 2013; 87 Feng (10.1016/j.nantod.2019.100829_bib0700) 2016; 2 Dolui (10.1016/j.nantod.2019.100829_bib0590) 2013; 88 Cui (10.1016/j.nantod.2019.100829_bib0155) 2015; 10 Somorjai (10.1016/j.nantod.2019.100829_bib0530) 1989; 31 Li (10.1016/j.nantod.2019.100829_bib0540) 2015; 9 Dato (10.1016/j.nantod.2019.100829_bib0655) 2008; 8 Xu (10.1016/j.nantod.2019.100829_bib0675) 2011; 5 Denis (10.1016/j.nantod.2019.100829_bib0215) 2010; 492 Wang (10.1016/j.nantod.2019.100829_bib0365) 2015; 3 Xu (10.1016/j.nantod.2019.100829_bib0690) 2013; 9 Lu (10.1016/j.nantod.2019.100829_bib0095) 2013; 3 Liu (10.1016/j.nantod.2019.100829_bib0490) 2014; 6 Ma (10.1016/j.nantod.2019.100829_bib0615) 2014; 8 Zhang (10.1016/j.nantod.2019.100829_bib0575) 2015; 15 Dai (10.1016/j.nantod.2019.100829_bib0645) 2009; 232105 Chen (10.1016/j.nantod.2019.100829_bib0350) 2013; 5 Wang (10.1016/j.nantod.2019.100829_bib0370) 2013; 273 Liu (10.1016/j.nantod.2019.100829_bib0075) 2010; 10 Zhang (10.1016/j.nantod.2019.100829_bib0415) 2019; 5 Sato (10.1016/j.nantod.2019.100829_bib0520) 2010; 82 Zhu (10.1016/j.nantod.2019.100829_bib0535) 2016; 261 |
References_xml | – volume: 12 start-page: 5218 year: 2012 end-page: 5223 ident: bib0135 publication-title: Nano Lett. – volume: 5 start-page: 285 year: 2014 end-page: 291 ident: bib0480 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 1 year: 2016 end-page: 21 ident: bib0200 publication-title: 2d Mater. – volume: 3 start-page: 3652 year: 2012 end-page: 3656 ident: bib0475 publication-title: J. Phys. Chem. Lett. – volume: 261 start-page: 75 year: 2016 end-page: 81 ident: bib0535 publication-title: Catal. Today – volume: 95 start-page: 96 year: 2009 end-page: 99 ident: bib0395 publication-title: Appl. Phys. Lett. – volume: 31 start-page: 1 year: 1989 end-page: 41 ident: bib0530 publication-title: Catal. Rev. – volume: 270 start-page: 590 year: 1995 end-page: 593 ident: bib0005 publication-title: Science – volume: 104 start-page: 1 year: 2014 end-page: 5 ident: bib0410 publication-title: Appl. Phys. Lett. – volume: 97 start-page: 10 year: 2010 end-page: 13 ident: bib0065 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 425 year: 2012 end-page: 429 ident: bib0325 publication-title: Adv. Energy Mater. – volume: 81 start-page: 475 year: 2011 end-page: 479 ident: bib0340 publication-title: Eur. Phys. J. B – volume: 15 start-page: 6586 year: 2015 end-page: 6591 ident: bib0575 publication-title: Nano Lett. – volume: 6 year: 2016 ident: bib0600 publication-title: AIP Adv. – volume: 21 start-page: 3335 year: 2011 end-page: 3345 ident: bib0085 publication-title: J. Mater. Chem. – volume: 9 start-page: 420 year: 2015 end-page: 427 ident: bib0220 publication-title: IET Circuits, Devices Syst. – volume: 10 start-page: 35289 year: 2018 end-page: 35295 ident: bib0735 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 3447 year: 2013 end-page: 3454 ident: bib0190 publication-title: Nano Lett. – volume: 10 start-page: 715 year: 2009 end-page: 722 ident: bib0390 publication-title: ChemPhysChem – volume: 23 start-page: 3944 year: 2011 end-page: 3948 ident: bib0180 publication-title: Adv. Mater. – volume: 20 start-page: 7114 year: 2010 ident: bib0090 publication-title: J. Mater. Chem. – volume: 46 start-page: 1112 year: 2010 end-page: 1114 ident: bib0045 publication-title: Chem. Commun. – volume: 88 start-page: 1 year: 2013 end-page: 9 ident: bib0590 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 15 start-page: 2892 year: 2015 end-page: 2901 ident: bib0685 publication-title: Nano Lett. – volume: 6 start-page: 6293 year: 2012 end-page: 6300 ident: bib0310 publication-title: ACS Nano – volume: 10 start-page: 2589 year: 2014 end-page: 2594 ident: bib0610 publication-title: Small. – volume: 53 year: 2014 ident: bib0550 publication-title: J. Appl. Phys. – volume: 2 start-page: 1 year: 2012 end-page: 8 ident: bib0265 publication-title: Sci. Rep. – volume: 25 start-page: 6699 year: 2013 end-page: 6702 ident: bib0715 publication-title: Adv. Mater. – volume: 10 start-page: 4863 year: 2010 end-page: 4868 ident: bib0075 publication-title: Nano Lett. – volume: 10 start-page: 534 year: 2015 end-page: 540 ident: bib0155 publication-title: Nat. Nanotechnol. – volume: 232105 start-page: 93 year: 2009 end-page: 96 ident: bib0645 publication-title: Appl. Phys. Lett. – volume: 48 start-page: 95 year: 2015 end-page: 105 ident: bib0455 publication-title: Calphad Comput. Coupling Phase Diagrams Thermochem. – volume: 2 year: 2014 ident: bib0495 publication-title: APL Mater. – volume: 11 year: 2016 ident: bib0555 publication-title: Nanoscale Res. Lett. – volume: 116 start-page: 25112 year: 2012 end-page: 25118 ident: bib0680 publication-title: J. Phys. Chem. C. – volume: 10 start-page: 217 year: 2018 end-page: 237 ident: bib0725 publication-title: NPG Asia Mater. – volume: 10 start-page: 2975 year: 2014 end-page: 2991 ident: bib0205 publication-title: Small. – volume: 14 start-page: 442 year: 2014 end-page: 449 ident: bib0620 publication-title: Nano Lett. – volume: 328 start-page: 213 year: 2010 end-page: 216 ident: bib0035 publication-title: Science – volume: 4 start-page: 5002 year: 2016 end-page: 5025 ident: bib0335 publication-title: J. Mater. Chem. A. – volume: 6 start-page: 21536 year: 2016 ident: bib0500 publication-title: Sci. Rep. – volume: 406 start-page: 2254 year: 2011 end-page: 2260 ident: bib0470 publication-title: Phys. B Condens. Matter. – volume: 9 start-page: 1316 year: 2013 end-page: 1320 ident: bib0320 publication-title: Small. – volume: 6 start-page: 13392 year: 2016 end-page: 13398 ident: bib0285 publication-title: RSC Adv. – volume: 8 start-page: 1365 year: 2012 end-page: 1372 ident: bib0670 publication-title: Small. – volume: 81 year: 2007 ident: bib0080 publication-title: Rev. Mod. Phys. – volume: 6 start-page: 2839 year: 2013 ident: bib0100 publication-title: Energy Environ. Sci. – volume: 75 year: 2012 ident: bib0195 publication-title: Rep. Prog. Phys. – volume: 2 year: 2016 ident: bib0695 publication-title: Sci. Adv. – volume: 13 start-page: 624 year: 2014 end-page: 630 ident: bib0170 publication-title: Nat. Mater. – volume: 8 start-page: 226 year: 2016 end-page: 232 ident: bib0355 publication-title: Nanoscale – volume: 5 start-page: 5207 year: 2015 end-page: 5234 ident: bib0105 publication-title: ACS Catal. – volume: 3 start-page: 1 year: 2013 end-page: 8 ident: bib0145 publication-title: Sci. Rep. – volume: 11 start-page: 5111 year: 2011 end-page: 5116 ident: bib0160 publication-title: Nano Lett. – volume: 273 start-page: 302 year: 2013 end-page: 309 ident: bib0370 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 91 year: 2008 end-page: 99 ident: bib0660 publication-title: IEEE Trans. Nanotechnol. – volume: 82 start-page: 1633 year: 2010 end-page: 1690 ident: bib0520 publication-title: Rev. Mod. Phys. – volume: 11 start-page: 307 year: 1977 end-page: 320 ident: bib0460 publication-title: Oxid. Met. – volume: 22 year: 2010 ident: bib0375 publication-title: J. Phys. Condens. Matter – volume: 9 start-page: 1257 year: 2015 end-page: 1262 ident: bib0540 publication-title: ACS Nano – volume: 333 start-page: 999 year: 2011 end-page: 1003 ident: bib0275 publication-title: Science – volume: 8 start-page: 4672 year: 2014 end-page: 4677 ident: bib0615 publication-title: ACS Nano – volume: 8 start-page: 8582 year: 2014 end-page: 8590 ident: bib0705 publication-title: ACS Nano – volume: 25 start-page: 3456 year: 2013 end-page: 3461 ident: bib0425 publication-title: Adv. Mater. – volume: 6 start-page: 6 year: 2007 end-page: 9 ident: bib0630 publication-title: Nat. Mater. – volume: 2 start-page: 1 year: 2016 end-page: 13 ident: bib0700 publication-title: Sci. Adv. – volume: 94 start-page: 1 year: 2016 end-page: 6 ident: bib0485 publication-title: Phys. Rev. B – volume: 26 start-page: 1399 year: 2014 end-page: 1404 ident: bib0625 publication-title: Adv. Mater. – volume: 24 start-page: 2320 year: 2012 end-page: 2325 ident: bib0185 publication-title: Adv. Mater. – volume: 26 year: 2014 ident: bib0570 publication-title: J. Phys. Condens. Matter – volume: 87 start-page: 2 year: 2013 end-page: 5 ident: bib0525 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 6 start-page: 1 year: 2015 end-page: 10 ident: bib0515 publication-title: Nat. Commun. – volume: 13 start-page: 3023 year: 2013 end-page: 3028 ident: bib0580 publication-title: Nano Lett. – volume: 50 start-page: 4476 year: 2012 end-page: 4482 ident: bib0280 publication-title: Carbon – volume: 5 start-page: 5994 year: 2013 end-page: 6000 ident: bib0350 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 2460 year: 2014 end-page: 2466 ident: bib0235 publication-title: Chem. Mater. – volume: 320 start-page: 1308 year: 2008 ident: bib0030 publication-title: Science – volume: 114 start-page: 18961 year: 2010 end-page: 18971 ident: bib0305 publication-title: J. Phys. Chem. C. – volume: 5 start-page: 263 year: 2013 end-page: 275 ident: bib0125 publication-title: Nat. Chem. – volume: 146 start-page: 351 year: 2008 end-page: 355 ident: bib0025 publication-title: Solid State Commun. – volume: 166 start-page: 37 year: 2015 end-page: 41 ident: bib0225 publication-title: Mater. Chem. Phys. – volume: 106 year: 2015 ident: bib0595 publication-title: Appl. Phys. Lett. – volume: 88 start-page: 1 year: 2013 end-page: 5 ident: bib0565 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 131 start-page: 9890 year: 2009 end-page: 9891 ident: bib0650 publication-title: J. Am. Chem. Soc. – volume: 468 start-page: 549 year: 2010 end-page: 552 ident: bib0290 publication-title: Nature. – volume: 87 start-page: 1 year: 2013 end-page: 7 ident: bib0560 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 342 start-page: 15 year: 2001 end-page: 21 ident: bib0605 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 5338 year: 2011 end-page: 5344 ident: bib0675 publication-title: ACS Nano – volume: 25 start-page: 1490 year: 2013 end-page: 1495 ident: bib0315 publication-title: Chem. Mater. – volume: 29 start-page: 3858 year: 2017 end-page: 3862 ident: bib0510 publication-title: Chem. Mater. – volume: 26 start-page: 7593 year: 2014 end-page: 7599 ident: bib0360 publication-title: Adv. Mater. – volume: 9 start-page: 1472 year: 2009 end-page: 1475 ident: bib0635 publication-title: Nano Lett. – volume: 1 year: 2016 ident: bib0150 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 1206 year: 2013 end-page: 1224 ident: bib0690 publication-title: Small. – volume: 14 start-page: 1 year: 2018 end-page: 11 ident: bib0730 publication-title: Small. – volume: 492 start-page: 251 year: 2010 end-page: 257 ident: bib0215 publication-title: Chem. Phys. Lett. – volume: 321 start-page: 385 year: 2008 end-page: 389 ident: bib0020 publication-title: Science – volume: 6 start-page: 7311 year: 2012 end-page: 7317 ident: bib0165 publication-title: ACS Nano – volume: 29 start-page: 133 year: 2005 end-page: 139 ident: bib0435 publication-title: Calphad Comput. Coupling Phase Diagrams Thermochem. – volume: 105 start-page: 2 year: 2010 end-page: 5 ident: bib0120 publication-title: Phys. Rev. Lett. – volume: 115 start-page: 5232 year: 2011 end-page: 5238 ident: bib0055 publication-title: J. Phys. Chem. C. – volume: 7 start-page: 5235 year: 2013 end-page: 5242 ident: bib0465 publication-title: ACS Nano – volume: 74 start-page: 355 year: 2002 end-page: 361 ident: bib0250 publication-title: Appl. Phys. A Mater. Sci. Process. – volume: 23 year: 2012 ident: bib0230 publication-title: Nanotechnology. – volume: 20 year: 2009 ident: bib0640 publication-title: Nanotechnology. – volume: 8 start-page: 2012 year: 2008 end-page: 2016 ident: bib0655 publication-title: Nano Lett. – volume: 3 start-page: 3990 year: 2013 ident: bib0095 publication-title: RSC Adv. – volume: 14 start-page: 1337 year: 2014 end-page: 1342 ident: bib0585 publication-title: Nano Lett. – volume: 6 start-page: 147 year: 2011 end-page: 150 ident: bib0115 publication-title: Nat. Nanotechnol. – volume: 43 start-page: 7067 year: 2014 end-page: 7098 ident: bib0210 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 7396 year: 2014 ident: bib0295 publication-title: J. Mater. Chem. C. – volume: 26 start-page: 23 year: 2005 end-page: 38 ident: bib0450 publication-title: J. Phase Equilibria Diffus. – volume: 18 start-page: 122 year: 2017 end-page: 133 ident: bib0010 publication-title: Sci. Technol. Adv. Mater. – volume: 5 start-page: 38 year: 2013 end-page: 51 ident: bib0040 publication-title: Nanoscale – volume: 26 start-page: 2648 year: 2014 end-page: 2653 ident: bib0405 publication-title: Adv. Mater. – volume: 80 start-page: 1339 year: 1958 ident: bib0050 publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 10451 year: 2005 end-page: 10453 ident: bib0110 publication-title: Proc. Natl. Acad. Sci. – volume: 9 start-page: 1752 year: 2009 end-page: 1758 ident: bib0260 publication-title: Nano Lett. – volume: 39 start-page: 126 year: 2013 end-page: 132 ident: bib0345 publication-title: J. Mol. Graph. Model. – volume: 83 start-page: 1 year: 2011 end-page: 4 ident: bib0140 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 12 start-page: 1538 year: 2012 end-page: 1544 ident: bib0430 publication-title: Nano Lett. – volume: 6 start-page: 624 year: 2014 end-page: 629 ident: bib0490 publication-title: Nanoscale. – volume: 24 start-page: 5481 year: 2012 end-page: 5486 ident: bib0385 publication-title: Adv. Mater. – volume: 10 start-page: 553 year: 2010 end-page: 561 ident: bib0665 publication-title: Nano Lett. – volume: 44 start-page: 4065 year: 2015 end-page: 4079 ident: bib0445 publication-title: J. Korean Inst. Electr. Electron. Mater. Eng. – volume: 25 start-page: 292 year: 2004 end-page: 295 ident: bib0440 publication-title: J. Phase Equilibria Diffus. – volume: 7 start-page: 4610 year: 2013 end-page: 4616 ident: bib0400 publication-title: ACS Nano – volume: 8 start-page: 5304 year: 2014 end-page: 5314 ident: bib0720 publication-title: ACS Nano – volume: 82 start-page: 71 year: 2015 end-page: 75 ident: bib0380 publication-title: Mater. Res. Bull. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib0015 publication-title: Science – volume: 8 start-page: 323 year: 2008 end-page: 327 ident: bib0060 publication-title: Nano Lett. – volume: 44 start-page: 2702 year: 2015 end-page: 2712 ident: bib0130 publication-title: Chem. Soc. Rev. – volume: 5 year: 2019 ident: bib0415 publication-title: Sci. Adv. – volume: 2 start-page: 346 year: 2006 end-page: 350 ident: bib0240 publication-title: Small. – start-page: 457 year: 2001 end-page: 460 ident: bib0245 publication-title: Nano Lett. – volume: 5 start-page: 4112 year: 2011 end-page: 4117 ident: bib0270 publication-title: ACS Nano – volume: 96 start-page: 448 year: 2016 end-page: 453 ident: bib0300 publication-title: Carbon – volume: 112 start-page: 14527 year: 2015 end-page: 14532 ident: bib0330 publication-title: Proc. Natl. Acad. Sci. – volume: 15 start-page: 2612 year: 2015 end-page: 2619 ident: bib0710 publication-title: Nano Lett. – volume: 6 start-page: 3468 year: 2012 end-page: 3480 ident: bib0175 publication-title: ACS Nano – volume: 12 start-page: 4025 year: 2012 end-page: 4031 ident: bib0255 publication-title: Nano Lett. – volume: 6 start-page: 6448 year: 2014 ident: bib0070 publication-title: Nanoscale. – volume: 7 start-page: 7534 year: 2015 end-page: 7541 ident: bib0545 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 1 year: 2017 end-page: 7 ident: bib0505 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 6301 year: 2015 end-page: 6306 ident: bib0365 publication-title: J. Mater. Chem. C. – volume: 7 start-page: 2768 year: 2013 end-page: 2772 ident: bib0420 publication-title: ACS Nano – volume: 9 start-page: 1752 year: 2009 ident: 10.1016/j.nantod.2019.100829_bib0260 publication-title: Nano Lett. doi: 10.1021/nl803279t – volume: 75 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0195 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/6/062501 – volume: 26 start-page: 23 year: 2005 ident: 10.1016/j.nantod.2019.100829_bib0450 publication-title: J. Phase Equilibria Diffus. doi: 10.1361/15477030522455 – volume: 5 year: 2019 ident: 10.1016/j.nantod.2019.100829_bib0415 publication-title: Sci. Adv. – volume: 44 start-page: 4065 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0445 publication-title: J. Korean Inst. Electr. Electron. Mater. Eng. – volume: 2 start-page: 1 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0265 publication-title: Sci. Rep. doi: 10.1038/srep00586 – volume: 11 start-page: 307 year: 1977 ident: 10.1016/j.nantod.2019.100829_bib0460 publication-title: Oxid. Met. doi: 10.1007/BF00608014 – volume: 6 start-page: 3468 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0175 publication-title: ACS Nano doi: 10.1021/nn300503e – volume: 22 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0375 publication-title: J. Phys. Condens. Matter – volume: 6 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0600 publication-title: AIP Adv. doi: 10.1063/1.4943080 – volume: 8 start-page: 5304 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0720 publication-title: ACS Nano doi: 10.1021/nn5015215 – volume: 50 start-page: 4476 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0280 publication-title: Carbon doi: 10.1016/j.carbon.2012.05.026 – volume: 12 start-page: 1538 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0430 publication-title: Nano Lett. doi: 10.1021/nl2043612 – volume: 10 start-page: 35289 year: 2018 ident: 10.1016/j.nantod.2019.100829_bib0735 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13248 – volume: 5 start-page: 38 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0040 publication-title: Nanoscale doi: 10.1039/C2NR32629A – volume: 7 start-page: 2768 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0420 publication-title: ACS Nano doi: 10.1021/nn4002038 – volume: 87 start-page: 1 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0560 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.195201 – volume: 8 start-page: 1365 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0670 publication-title: Small. doi: 10.1002/smll.201102223 – volume: 7 start-page: 4610 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0400 publication-title: ACS Nano doi: 10.1021/nn401420h – volume: 328 start-page: 213 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0035 publication-title: Science doi: 10.1126/science.1183665 – volume: 26 start-page: 2460 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0235 publication-title: Chem. Mater. doi: 10.1021/cm500086j – volume: 26 start-page: 1399 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0625 publication-title: Adv. Mater. doi: 10.1002/adma.201304389 – volume: 166 start-page: 37 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0225 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.04.005 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.nantod.2019.100829_bib0015 publication-title: Science doi: 10.1126/science.1102896 – volume: 5 start-page: 5207 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0105 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00991 – volume: 6 start-page: 6448 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0070 publication-title: Nanoscale. doi: 10.1039/c4nr01220h – volume: 29 start-page: 133 year: 2005 ident: 10.1016/j.nantod.2019.100829_bib0435 publication-title: Calphad Comput. Coupling Phase Diagrams Thermochem. doi: 10.1016/j.calphad.2005.06.002 – volume: 24 start-page: 2320 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0185 publication-title: Adv. Mater. doi: 10.1002/adma.201104798 – volume: 3 start-page: 6301 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0365 publication-title: J. Mater. Chem. C. doi: 10.1039/C5TC00563A – volume: 104 start-page: 1 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0410 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4867197 – volume: 6 start-page: 13392 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0285 publication-title: RSC Adv. doi: 10.1039/C5RA22664C – volume: 406 start-page: 2254 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0470 publication-title: Phys. B Condens. Matter. doi: 10.1016/j.physb.2011.03.044 – volume: 82 start-page: 1633 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0520 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1633 – volume: 15 start-page: 2612 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0710 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00190 – volume: 11 start-page: 5111 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0160 publication-title: Nano Lett. doi: 10.1021/nl201874w – volume: 270 start-page: 590 year: 1995 ident: 10.1016/j.nantod.2019.100829_bib0005 publication-title: Science doi: 10.1126/science.270.5236.590 – volume: 6 start-page: 6 year: 2007 ident: 10.1016/j.nantod.2019.100829_bib0630 publication-title: Nat. Mater. doi: 10.1038/nmat1967 – volume: 25 start-page: 6699 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0715 publication-title: Adv. Mater. doi: 10.1002/adma.201303230 – volume: 97 start-page: 10 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0065 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3464319 – volume: 8 start-page: 323 year: 2008 ident: 10.1016/j.nantod.2019.100829_bib0060 publication-title: Nano Lett. doi: 10.1021/nl072838r – volume: 44 start-page: 2702 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0130 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00151J – volume: 12 start-page: 5218 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0135 publication-title: Nano Lett. doi: 10.1021/nl302389d – volume: 9 start-page: 1257 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0540 publication-title: ACS Nano doi: 10.1021/nn505048y – volume: 14 start-page: 442 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0620 publication-title: Nano Lett. doi: 10.1021/nl4032296 – volume: 5 start-page: 5338 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0675 publication-title: ACS Nano doi: 10.1021/nn103237x – volume: 15 start-page: 2892 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0685 publication-title: Nano Lett. doi: 10.1021/nl5045988 – volume: 3 start-page: 3652 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0475 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301673x – volume: 87 start-page: 2 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0525 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 96 start-page: 448 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0300 publication-title: Carbon doi: 10.1016/j.carbon.2015.09.086 – volume: 3 start-page: 3990 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0095 publication-title: RSC Adv. doi: 10.1039/c3ra22161j – volume: 6 start-page: 624 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0490 publication-title: Nanoscale. doi: 10.1039/C3NR04515C – volume: 116 start-page: 25112 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0680 publication-title: J. Phys. Chem. C. doi: 10.1021/jp3088447 – volume: 10 start-page: 4863 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0075 publication-title: Nano Lett. doi: 10.1021/nl102661q – volume: 10 start-page: 2589 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0610 publication-title: Small. doi: 10.1002/smll.201302893 – volume: 342 start-page: 15 year: 2001 ident: 10.1016/j.nantod.2019.100829_bib0605 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)00534-6 – volume: 6 start-page: 6293 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0310 publication-title: ACS Nano doi: 10.1021/nn301728j – volume: 9 start-page: 1316 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0320 publication-title: Small. doi: 10.1002/smll.201203021 – volume: 7 start-page: 5235 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0465 publication-title: ACS Nano doi: 10.1021/nn400971k – volume: 2 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0495 publication-title: APL Mater. doi: 10.1063/1.4895469 – volume: 320 start-page: 1308 year: 2008 ident: 10.1016/j.nantod.2019.100829_bib0030 publication-title: Science doi: 10.1126/science.1156965 – volume: 80 start-page: 1339 year: 1958 ident: 10.1016/j.nantod.2019.100829_bib0050 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 131 start-page: 9890 year: 2009 ident: 10.1016/j.nantod.2019.100829_bib0650 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9037593 – volume: 53 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0550 publication-title: J. Appl. Phys. – volume: 26 start-page: 2648 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0405 publication-title: Adv. Mater. doi: 10.1002/adma.201306095 – volume: 5 start-page: 263 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0125 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 2 start-page: 425 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0325 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100671 – volume: 74 start-page: 355 year: 2002 ident: 10.1016/j.nantod.2019.100829_bib0250 publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s003390201278 – volume: 8 start-page: 4672 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0615 publication-title: ACS Nano doi: 10.1021/nn5004327 – volume: 6 start-page: 21536 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0500 publication-title: Sci. Rep. doi: 10.1038/srep21536 – volume: 14 start-page: 1 year: 2018 ident: 10.1016/j.nantod.2019.100829_bib0730 publication-title: Small. – volume: 13 start-page: 3447 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0190 publication-title: Nano Lett. doi: 10.1021/nl3026357 – volume: 333 start-page: 999 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0275 publication-title: Science doi: 10.1126/science.1208759 – volume: 81 start-page: 475 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0340 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2011-20225-8 – volume: 46 start-page: 1112 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0045 publication-title: Chem. Commun. doi: 10.1039/B917705A – volume: 115 start-page: 5232 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0055 publication-title: J. Phys. Chem. C. doi: 10.1021/jp109002p – volume: 12 start-page: 4025 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0255 publication-title: Nano Lett. doi: 10.1021/nl301409h – volume: 20 year: 2009 ident: 10.1016/j.nantod.2019.100829_bib0640 publication-title: Nanotechnology. – volume: 112 start-page: 14527 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0330 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1505993112 – volume: 492 start-page: 251 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0215 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.04.038 – volume: 25 start-page: 3456 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0425 publication-title: Adv. Mater. doi: 10.1002/adma.201301244 – volume: 5 start-page: 5994 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0350 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am400563g – volume: 23 start-page: 3944 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0180 publication-title: Adv. Mater. doi: 10.1002/adma.201102584 – volume: 23 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0230 publication-title: Nanotechnology. – volume: 83 start-page: 1 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0140 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.245213 – volume: 10 start-page: 715 year: 2009 ident: 10.1016/j.nantod.2019.100829_bib0390 publication-title: ChemPhysChem doi: 10.1002/cphc.200800592 – volume: 146 start-page: 351 year: 2008 ident: 10.1016/j.nantod.2019.100829_bib0025 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.02.024 – volume: 2 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0695 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600322 – volume: 6 start-page: 7311 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0165 publication-title: ACS Nano doi: 10.1021/nn302422x – volume: 4 start-page: 5002 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0335 publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA10599D – volume: 82 start-page: 71 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0380 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.02.009 – volume: 25 start-page: 292 year: 2004 ident: 10.1016/j.nantod.2019.100829_bib0440 publication-title: J. Phase Equilibria Diffus. doi: 10.1007/s11669-004-0126-5 – volume: 13 start-page: 3023 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0580 publication-title: Nano Lett. doi: 10.1021/nl400902v – volume: 3 start-page: 1 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0145 publication-title: Sci. Rep. doi: 10.1038/srep01755 – volume: 1 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0150 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.52 – volume: 27 start-page: 1 year: 2017 ident: 10.1016/j.nantod.2019.100829_bib0505 publication-title: Adv. Funct. Mater. – volume: 232105 start-page: 93 year: 2009 ident: 10.1016/j.nantod.2019.100829_bib0645 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 285 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0480 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402375s – volume: 15 start-page: 6586 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0575 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02315 – volume: 88 start-page: 1 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0590 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.075420 – volume: 8 start-page: 8582 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0705 publication-title: ACS Nano doi: 10.1021/nn503287m – volume: 261 start-page: 75 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0535 publication-title: Catal. Today doi: 10.1016/j.cattod.2015.08.053 – volume: 9 start-page: 1206 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0690 publication-title: Small. doi: 10.1002/smll.201203097 – volume: 10 start-page: 534 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0155 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.70 – volume: 8 start-page: 2012 year: 2008 ident: 10.1016/j.nantod.2019.100829_bib0655 publication-title: Nano Lett. doi: 10.1021/nl8011566 – volume: 3 start-page: 1 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0200 publication-title: 2d Mater. – volume: 9 start-page: 1472 year: 2009 ident: 10.1016/j.nantod.2019.100829_bib0635 publication-title: Nano Lett. doi: 10.1021/nl8033637 – volume: 10 start-page: 2975 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0205 publication-title: Small. doi: 10.1002/smll.201400706 – volume: 14 start-page: 1337 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0585 publication-title: Nano Lett. doi: 10.1021/nl4043505 – volume: 31 start-page: 1 year: 1989 ident: 10.1016/j.nantod.2019.100829_bib0530 publication-title: Catal. Rev. doi: 10.1080/01614948909351347 – volume: 102 start-page: 10451 year: 2005 ident: 10.1016/j.nantod.2019.100829_bib0110 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0502848102 – volume: 5 start-page: 4112 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0270 publication-title: ACS Nano doi: 10.1021/nn200766e – volume: 106 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0595 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 91 year: 2008 ident: 10.1016/j.nantod.2019.100829_bib0660 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2007.910334 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0515 publication-title: Nat. Commun. – volume: 114 start-page: 18961 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0305 publication-title: J. Phys. Chem. C. doi: 10.1021/jp106764h – volume: 26 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0570 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/26/25/256003 – volume: 88 start-page: 1 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0565 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.144409 – volume: 468 start-page: 549 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0290 publication-title: Nature. doi: 10.1038/nature09579 – volume: 2 start-page: 1 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0700 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600322 – volume: 26 start-page: 7593 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0360 publication-title: Adv. Mater. doi: 10.1002/adma.201403537 – volume: 43 start-page: 7067 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0210 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00141A – volume: 21 start-page: 3335 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0085 publication-title: J. Mater. Chem. doi: 10.1039/C0JM02922J – volume: 9 start-page: 420 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0220 publication-title: IET Circuits, Devices Syst. doi: 10.1049/iet-cds.2015.0149 – volume: 20 start-page: 7114 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0090 publication-title: J. Mater. Chem. doi: 10.1039/c0jm00467g – volume: 18 start-page: 122 year: 2017 ident: 10.1016/j.nantod.2019.100829_bib0010 publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2016.1275784 – volume: 10 start-page: 217 year: 2018 ident: 10.1016/j.nantod.2019.100829_bib0725 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0023-8 – volume: 25 start-page: 1490 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0315 publication-title: Chem. Mater. doi: 10.1021/cm302819b – volume: 8 start-page: 226 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0355 publication-title: Nanoscale doi: 10.1039/C5NR06345K – volume: 48 start-page: 95 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0455 publication-title: Calphad Comput. Coupling Phase Diagrams Thermochem. doi: 10.1016/j.calphad.2014.11.004 – volume: 95 start-page: 96 year: 2009 ident: 10.1016/j.nantod.2019.100829_bib0395 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 7534 year: 2015 ident: 10.1016/j.nantod.2019.100829_bib0545 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508843z – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.nantod.2019.100829_bib0020 publication-title: Science doi: 10.1126/science.1157996 – volume: 39 start-page: 126 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0345 publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2012.11.009 – volume: 10 start-page: 553 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0665 publication-title: Nano Lett. doi: 10.1021/nl903414x – volume: 13 start-page: 624 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0170 publication-title: Nat. Mater. doi: 10.1038/nmat3944 – volume: 29 start-page: 3858 year: 2017 ident: 10.1016/j.nantod.2019.100829_bib0510 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b05271 – volume: 6 start-page: 147 year: 2011 ident: 10.1016/j.nantod.2019.100829_bib0115 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 105 start-page: 2 year: 2010 ident: 10.1016/j.nantod.2019.100829_bib0120 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 2 start-page: 7396 year: 2014 ident: 10.1016/j.nantod.2019.100829_bib0295 publication-title: J. Mater. Chem. C. doi: 10.1039/C4TC00924J – volume: 2 start-page: 346 year: 2006 ident: 10.1016/j.nantod.2019.100829_bib0240 publication-title: Small. doi: 10.1002/smll.200500348 – volume: 94 start-page: 1 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0485 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.075440 – volume: 6 start-page: 2839 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0100 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41444b – volume: 273 start-page: 302 year: 2013 ident: 10.1016/j.nantod.2019.100829_bib0370 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.02.035 – volume: 81 year: 2007 ident: 10.1016/j.nantod.2019.100829_bib0080 publication-title: Rev. Mod. Phys. – volume: 24 start-page: 5481 year: 2012 ident: 10.1016/j.nantod.2019.100829_bib0385 publication-title: Adv. Mater. doi: 10.1002/adma.201202255 – volume: 11 year: 2016 ident: 10.1016/j.nantod.2019.100829_bib0555 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1376-y – start-page: 457 year: 2001 ident: 10.1016/j.nantod.2019.100829_bib0245 publication-title: Nano Lett. doi: 10.1021/nl015549q |
SSID | ssj0045745 |
Score | 2.5882454 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Doping modifies physico-chemical properties of graphene and dichalcogenides.•Non-metal elements such as N, B, Si, P, and S are the common... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100829 |
SubjectTerms | 2D materials Doping Electronics Graphene Molybdenum disulfide MoS2 Sensing Sensor TMD Transition metal dichalcogenides Tungsten disulfide WS2 |
Title | Heteroatom doping of two-dimensional materials: From graphene to chalcogenides |
URI | https://dx.doi.org/10.1016/j.nantod.2019.100829 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14XZvHbpL1VoolKvaihd5C9lGs1KbUiDd_uzObpFQQBa9hBsIwzHzDfvMNIZcGph4Anor5kD6MKx0xKbWPcnc2j6UMpm4r7WEUpWN-NxGTFhk0uzBIq6xrf1XTXbWuv_TqaPaWs1nvEbB0gi8FAEGgEUnUBEX1Osjpq881zYOL2B0qRmOG1s36nON4IdekQL1QXyJdIHFA84f2tNFyhntkt8aKtF_9zj5p2cUB2dlQEDwkoxTpLAVMzq_UuN0nWkxp-VEwg7L9leQGBVRaJdo1Ha7A0qlUQ5GjZUH1cz7XBaTRzNi3IzIe3jwNUlafSGA6jIOSaUBAOo9k4qmpMiqykRQKJt7c83ILYAM3Y-PYs7kwfqC48kMeJYZrrk1ihRDhMWkvioU9IdRNXlFuoIMH3Po6kYkRyoSKJ_jUaTokbCKT6Vo_HM9YzLOGKPaSVfHMMJ5ZFc8OYWuvZaWf8Yd93AQ9-5YHGZT4Xz1P_-15RrYDnKIdF_uctMvVu70AqFGqrsulLtnq396noy-z8NI5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw9elzbJ5rHeSrGk9nGxhd5C9lGs1KbUiH_f2U0iFUTBa5iBMAwz37DffANwp3DqQeApqIPpQ5mQAeVcOkbuTqch5-7cbqWNxkE8ZY8zf1aDbrULY2iVZe0varqt1uWXVhnN1nqxaD0hlo7MSwFCEGxEnO1Aw6hTsTo0Ov1BPK4KMvNDe6vY2FPjUG3QWZqXoZtkRjLU4YYxEFms-UOH2uo6vUM4KOEi6RR_dAQ1vTqG_S0RwRMYx4bRkuHw_EqUXX8i2ZzkHxlVRrm_UN0gCEyLXLsnvQ1aWqFqrHMkz4h8Tpcyw0xaKP12CtPew6Qb0_JKApVe6OZUIgiSacCjtpgLJQIdcF_g0Ju226lGvGGWY8OwrVNfOa5gwvFYECkmmVSR9n3fO4P6KlvpcyB2-ApShU3cZdqREY-UL5QnWGReO1UTvCoyiSwlxM0li2VSccVekiKeiYlnUsSzCfTLa11IaPxhH1ZBT76lQoJV_lfPi3973sJuPBkNk2F_PLiEPdcM1ZaafQX1fPOurxF55OKmzKxP-InU6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom+doping+of+two-dimensional+materials%3A+From+graphene+to+chalcogenides&rft.jtitle=Nano+today&rft.au=Zhu%2C+Haoyue&rft.au=Gan%2C+Xin&rft.au=McCreary%2C+Amber&rft.au=Lv%2C+Ruitao&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=1748-0132&rft.eissn=1878-044X&rft.volume=30&rft_id=info:doi/10.1016%2Fj.nantod.2019.100829&rft.externalDocID=S1748013219302294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0132&client=summon |