Learning Invariant Patterns Based on a Convolutional Neural Network and Big Electroencephalography Data for Subject-Independent P300 Brain-Computer Interfaces

A brain-computer interface (BCI) measures and analyzes brain activity and converts this activity into computer commands to control external devices. In contrast to traditional BCIs that require a subject-specific calibration process before being operated, a subject-independent BCI learns a subject-i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1047 - 1057
Main Authors Gao, Wei, Yu, Tianyou, Yu, Jin-Gang, Gu, Zhenghui, Li, Kendi, Huang, Yong, Yu, Zhu Liang, Li, Yuanqing
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A brain-computer interface (BCI) measures and analyzes brain activity and converts this activity into computer commands to control external devices. In contrast to traditional BCIs that require a subject-specific calibration process before being operated, a subject-independent BCI learns a subject-independent model and eliminates subject-specific calibration for new users. However, building subject-independent BCIs remains difficult because electroencephalography (EEG) is highly noisy and varies by subject. In this study, we propose an invariant pattern learning method based on a convolutional neural network (CNN) and big EEG data for subject-independent P300 BCIs. The CNN was trained using EEG data from a large number of subjects, allowing it to extract subject-independent features and make predictions for new users. We collected EEG data from 200 subjects in a P300-based spelling task using two different types of amplifiers. The offline analysis showed that almost all subjects obtained significant cross-subject and cross-amplifier effects, with an average accuracy of more than 80%. Furthermore, more than half of the subjects achieved accuracies above 85%. These results indicated that our method was effective for building a subject-independent P300 BCI, with which more than 50% of users could achieve high accuracies without subject-specific calibration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2021.3083548