Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1

Homeostatic mechanisms in mammals respond to hormones and nutrients to maintain blood glucose levels within a narrow range. Caloric restriction causes many changes in glucose metabolism and extends lifespan; however, how this metabolism is connected to the ageing process is largely unknown. We show...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 434; no. 7029; pp. 113 - 118
Main Authors Rodgers, J.T, Lerin, C, Haas, W, Gygi, S.P, Spiegelman, B.M, Puigserver, P
Format Journal Article
LanguageEnglish
Published London Nature Publishing 03.03.2005
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Homeostatic mechanisms in mammals respond to hormones and nutrients to maintain blood glucose levels within a narrow range. Caloric restriction causes many changes in glucose metabolism and extends lifespan; however, how this metabolism is connected to the ageing process is largely unknown. We show here that the Sir2 homologue, SIRT1 -which modulates ageing in several species -controls the gluconeogenic/glycolytic pathways in liver in response to fasting signals through the transcriptional coactivator PGC-1α. A nutrient signalling response that is mediated by pyruvate induces SIRT1 protein in liver during fasting. We find that once SIRT1 is induced, it interacts with and deacetylates PGC-1α at specific lysine residues in an NAD+-dependent manner. SIRT1 induces gluconeogenic genes and hepatic glucose output through PGC-1α, but does not regulate the effects of PGC-1α on mitochondrial genes. In addition, SIRT1 modulates the effects of PGC-1α repression of glycolytic genes in response to fasting and pyruvate. Thus, we have identified a molecular mechanism whereby SIRT1 functions in glucose homeostasis as a modulator of PGC-1α. These findings have strong implications for the basic pathways of energy homeostasis, diabetes and lifespan.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0028-0836
1476-4687
DOI:10.1038/nature03354