Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source

Low-level laser therapy (LLLT) has been used for more than 30 years to heal wounds. In recent years, LLLT or photostimulation has been indicated as an effective tool for regenerative and dental medicine by using monochromatic light. The aim of this study is to indicate the usability of plasma arc li...

Full description

Saved in:
Bibliographic Details
Published inLasers in medical science Vol. 33; no. 4; pp. 785 - 794
Main Authors Çakmak, Anıl Sera, Çakmak, Soner, Vatansever, H. Seda, Gümüşderelioğlu, Menemşe
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Low-level laser therapy (LLLT) has been used for more than 30 years to heal wounds. In recent years, LLLT or photostimulation has been indicated as an effective tool for regenerative and dental medicine by using monochromatic light. The aim of this study is to indicate the usability of plasma arc light source for bone regeneration. This is why we used polychromatic light source providing effective wavelengths in the range of 590–1500 nm for cellular response and investigated photostimulation effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on 3D silk scaffolds. Cellular responses were examined by using cell culture methods in terms of proliferation, differentiation, and morphological analyses. The results showed that photostimulation with a polychromatic light source (applied for 5 min from the 3rd day after seeding up to the 28th day in 2-day intervals with 92-mW/cm 2 power from 10-cm distance to the cells) enhanced osteogenic differentiation of hMSCs according to higher alkaline phosphatase (ALP) activity, collagen and calcium content, osteogenic gene expressions, and matrix mineralization. In conclusion, we suggest that the plasma arc light source that was used here has a great potential for bone regeneration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0268-8921
1435-604X
DOI:10.1007/s10103-017-2414-4