Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes
Molecular phenomena involving electron transfer and reduction/oxidation processes are of the utmost importance in chemistry. However, accurate computational calculations of standard reduction potentials (SRPs) for transition metal complexes are still challenging. For this reason, some computational...
Saved in:
Published in | Journal of molecular modeling Vol. 23; no. 10; pp. 283 - 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Molecular phenomena involving electron transfer and reduction/oxidation processes are of the utmost importance in chemistry. However, accurate computational calculations of standard reduction potentials (SRPs) for transition metal complexes are still challenging. For this reason, some computational strategies have been proposed in order to overcome the main limitations in SRP calculations for copper complexes. However, these strategies are limited to particular coordination spheres and do not represent a general methodology. In this work, we present standard reduction potential calculations for copper complexes in aqueous solution covering a wide range of coordination spheres. These calculations were performed using the M06-2X density functional, and by employing the direct and isodesmic approaches. Result analysis reveals that values obtained with the use of the isodesmic method are in better agreement with experimental values than those obtained from the direct method (mean unsigned error 0.39 V with the direct and 0.08 V with the isodesmic method). This approach provides values with errors comparable to the experimental uncertainty due to the proper cancellation of computational errors. These results strongly suggest the isodesmic approach as an adequate methodology for the calculation of SRPs for copper complexes with diverse coordination spheres.
Graphical Abstract
Comparison between direct and isodesmic methods in the calculation of standard reduction potentials for copper complexes using DFT methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1610-2940 0948-5023 |
DOI: | 10.1007/s00894-017-3469-7 |