Integrated microwave photonic phase shifter with full tunable phase shifting range (> 360°) and RF power equalization

We report a novel microwave photonic phase and amplitude control structure based on a single microring resonator with a tunable Mach Zehnder interferometer reflective loop, which enables the realization of a continuously tunable microwave photonic phase shifter with enhanced phase tuning range while...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 10; pp. 14798 - 14808
Main Authors Chew, Suen Xin, Huang, Duanni, Li, Liwei, Song, Shijie, Tran, Minh A, Yi, Xiaoke, Bowers, John E
Format Journal Article
LanguageEnglish
Published United States 13.05.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a novel microwave photonic phase and amplitude control structure based on a single microring resonator with a tunable Mach Zehnder interferometer reflective loop, which enables the realization of a continuously tunable microwave photonic phase shifter with enhanced phase tuning range while simultaneously compensating for the RF power variations. The complimentary tuning of the phase and amplitude presents a simplistic approach to resolve the inherent trade-off between maintaining a full RF phase shift while eliminating large RF power variations. Detailed simulations have been carried out to analyze the performance of the new structure as a microwave photonic phase shifter, where the reflective nature of the proposed configuration shows an effective doubling of the phase range while the amplitude compensation module provides a parallel control to potentially reduce the RF amplitude variations to virtually zero. The phase range enhancement, which is first verified experimentally with a passive only chip, demonstrates the capability to achieve a continuously tunable RF phase shift of 0-510° with an RF amplitude variation of 9 dB. Meanwhile, the amplitude compensation scheme is incorporated onto an active chip with a continuously tunable RF phase shift of 0-150°, where the RF power variations is shown to be reduced by 5 dB while maintaining a constant RF phase shift.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.014798