Dynamics of tissue ubiquitin pools and ubiquitin-proteasome pathway component activities during the systemic response to traumatic shock

Based on the biological significance of the ubiquitin-proteasome pathway (UPP) and its potential role during sepsis, burns and ischemia-reperfusion injury, we hypothesized that the systemic response to traumatic shock (TS) is accompanied by tissue-specific UPP alterations. Therefore, we studied tiss...

Full description

Saved in:
Bibliographic Details
Published inPhysiological research Vol. 56; no. 5; pp. 547 - 557
Main Authors Patel, M B, Earle, S A, Majetschak, M
Format Journal Article
LanguageEnglish
Published Czech Republic Institute of Physiology 01.01.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the biological significance of the ubiquitin-proteasome pathway (UPP) and its potential role during sepsis, burns and ischemia-reperfusion injury, we hypothesized that the systemic response to traumatic shock (TS) is accompanied by tissue-specific UPP alterations. Therefore, we studied tissue ubiquitin pools, chymotryptic- and tryptic-like proteasome peptidase activities and ubiquitin-protein ligation (UbPL) rates in skeletal muscle, heart, lung, liver, spleen and kidney using a clinically relevant porcine model (bilateral femur fracture/hemorrhage followed by fluid resuscitation). TS induced a systemic reduction of tissue-specific high molecular mass ubiquitin-protein conjugates (>50 kDa). Free ubiquitin was unaffected. The dynamic organ patterns of ubiquitin pools paralleled the typical physiological response to TS and resuscitation. Reduction of ubiquitin-protein conjugates was most pronounced in heart and lung (p<0.05 vs. control) and accompanied by significant increases in proteasome peptidase and UbPL activities in these organs. Unlike all other tissues, spleen proteasome peptidase and UbPL activities were significantly reduced 10 h after TS. These findings support the concept that the UPP could play an important role in regulation of cell functions during the early whole-body response to TS. The UPP might be a therapeutic target to improve the metabolic care after TS, particularly in the heart, lung, and spleen.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0862-8408
1802-9973
DOI:10.33549/physiolres.931068