Integrating fuzzy logic with Pearson correlation to optimize contaminant detection in water distribution system with uncertainty analyses
An effective detection algorithm, supervising an online water system, is expected to monitor changes in water quality due to any contamination. However, contemporary event detection methods are often criticized for their high false detection rates as well as for their low true detection rates. This...
Saved in:
Published in | Environmental monitoring and assessment Vol. 191; no. 7; pp. 441 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An effective detection algorithm, supervising an online water system, is expected to monitor changes in water quality due to any contamination. However, contemporary event detection methods are often criticized for their high false detection rates as well as for their low true detection rates. This study proposes two new event detection methods for contamination that use multi-objective optimization by investigating the correlation between multiple types of conventional water quality sensors. While the first method incorporates non-dominated sorting genetic algorithm II (NSGA-II) with the Pearson correlation Euclidean distance (PE) method in order to maximize the probability of detection (PD) and to minimize the false alarm rate (FAR), the second method introduces fuzzy logic in order to establish a degree of correlations ranking that replaces the correlation relationship indicator threshold. Optimization is performed by using NSGA-II in the second method. The results of this study show that the incorporation of fuzzy logic with NSGA-II in event detection method have produced better results in event detection. The results also show that both methods detect all true events without producing any false alarm rates. Moreover, an uncertainty analysis on input sensor signals is performed to test the robustness of the fuzzy logic-based event detection method by employing the widely used Monte Carlo simulation (MCS) technique. Four different scenarios of uncertainty are analyzed, in particular, and the findings suggest that the proposed method is very effective in minimizing false alarm rates and maximizing true events detection, and hence, it can be regarded as one of the novel approaches to demonstrate its application in the development of an event detection algorithm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0167-6369 1573-2959 |
DOI: | 10.1007/s10661-019-7533-x |