Throughput Analysis for Full-Duplex Wireless Networks With Imperfect Self-Interference Cancellation
This paper investigates the throughput for wireless network with full-duplex radios using stochastic geometry. Full-duplex (FD) radios can exchange data simultaneously with each other. On the other hand, the downside of FD transmission is that it will inevitably cause extra interference to the netwo...
Saved in:
Published in | IEEE transactions on communications Vol. 63; no. 11; pp. 4490 - 4500 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates the throughput for wireless network with full-duplex radios using stochastic geometry. Full-duplex (FD) radios can exchange data simultaneously with each other. On the other hand, the downside of FD transmission is that it will inevitably cause extra interference to the network compared to half-duplex (HD) transmission. Moreover, the residual self-interference has negative effects on the network throughput. In this paper, we focus on a wireless network of nodes with both HD and FD capabilities and derive and optimize the throughput in such a network. Our analytical result shows that if the network is adopting an ALOHA protocol, the maximal throughput is achieved by scheduling all concurrently transmitting nodes to work in either FD mode or HD mode depending on one simple condition. Moreover, the effects of imperfect self-interference cancellation on the signal-to-interference ratio (SIR) loss and throughput are also analyzed based on our mathematical model. We rigorously quantify the impact of imperfect self-interference cancellation on the throughput gain, transmission range, and other metrics, and we establish the minimum amount of self-interference suppression needed for FD to be beneficial. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2015.2465903 |