Calcite formation induced by Ensifer adhaerens, Microbacterium testaceum, Paeniglutamicibacter kerguelensis, Pseudomonas protegens and Rheinheimera texasensis

A wide range of bacterial species are able to induce calcium carbonate precipitation. Using our own laboratory-preserved strains, we have newly discovered that Ensifer sp. MY11e, Microbacterium sp. TMd9a1, Paeniglutamicibacter sp. MSa1a, Pseudomonas sp. GTc3, and Rheinheimera sp. ATWe6 can induce th...

Full description

Saved in:
Bibliographic Details
Published inAntonie van Leeuwenhoek Vol. 112; no. 5; pp. 711 - 721
Main Authors Hatayama, Kouta, Saito, Katsumi
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A wide range of bacterial species are able to induce calcium carbonate precipitation. Using our own laboratory-preserved strains, we have newly discovered that Ensifer sp. MY11e, Microbacterium sp. TMd9a1, Paeniglutamicibacter sp. MSa1a, Pseudomonas sp. GTc3, and Rheinheimera sp. ATWe6 can induce the formation of calcite crystals on an agar medium. Type strains of their closely related species ( Ensifer adhaerens , Microbacterium testaceum , Paeniglutamicibacter kerguelensis , Pseudomonas protegens , and Rheinheimera texasensis ) could also induce calcite formation. Although the initial pH value of the agar medium was 6.1, the pH of the agar media containing calcite, induced by cultivation of the 10 bacterial strains, increased to 8.0–8.4. The ammonification (oxidative deamination) of amino acids may been responsible for this increase in pH. The crystals formed both on and around the bacterial colonies. Furthermore, when these strains (excepting two Microbacterium strains) were cultivated on a cellulose acetate membrane filter (0.20 μm pore size) resting on the surface of the agar medium (i.e., in the membrane filter culture method), the crystals formed on the agar medium separate from the bacterial cells. These results indicate that the bacterial cells did not necessarily become nucleation sites for these crystals. We also investigated whether the studied strains could be applied to the biocementation of sand, and found that only two Ensifer strains were able to form large sand lumps.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-6072
1572-9699
DOI:10.1007/s10482-018-1204-8