A direct version of Shamir and Snir's lower bounds on monotone circuit depth

We present direct proofs of the following results of Shamir and Snir [Mathematical System Theory 13 (1980) 301-322] on the depth of monotone arithmetic circuits over rings of characteristic 0: (1) an ω((log p)(log n)) lower bound for computing the product of p n × n matrices; and (2) an ω( n) lower...

Full description

Saved in:
Bibliographic Details
Published inInformation processing letters Vol. 49; no. 5; pp. 243 - 248
Main Authors Tiwari, Prasoon, Tompa, Martin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 11.03.1994
Elsevier Science
Elsevier Sequoia S.A
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present direct proofs of the following results of Shamir and Snir [Mathematical System Theory 13 (1980) 301-322] on the depth of monotone arithmetic circuits over rings of characteristic 0: (1) an ω((log p)(log n)) lower bound for computing the product of p n × n matrices; and (2) an ω( n) lower bound for computing the permanent of an n × n matrix.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-0190
1872-6119
DOI:10.1016/0020-0190(94)90061-2