Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model

We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional...

Full description

Saved in:
Bibliographic Details
Published inProgress in biophysics and molecular biology Vol. 96; no. 1; pp. 339 - 356
Main Authors Bin Im, Uk, Sung Kwon, Soon, Kim, Kiwoong, Ho Lee, Yong, Ki Park, Yong, Hyun Youn, Chan, Bo Shim, Eun
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0079-6107
1873-1732
DOI:10.1016/j.pbiomolbio.2007.07.024