Tissue-targeted metabonomics: biological considerations and application to doxorubicin-induced hepatic oxidative stress

Tissue-targeted metabonomics, or the use of microdialysis sampling with NMR detection, can be used to monitor the metabolic profiles of specific tissues without the need to take tissue biopsies. This allows for sampling from the same animal over the time course of the experiment, reducing animal-to-...

Full description

Saved in:
Bibliographic Details
Published inMetabolomics Vol. 5; no. 2; pp. 219 - 228
Main Authors Price, Kristin E, Larive, Cynthia K, Lunte, Craig E
Format Journal Article
LanguageEnglish
Published Boston Boston : Springer US 01.06.2009
Springer US
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tissue-targeted metabonomics, or the use of microdialysis sampling with NMR detection, can be used to monitor the metabolic profiles of specific tissues without the need to take tissue biopsies. This allows for sampling from the same animal over the time course of the experiment, reducing animal-to-animal variability and decreasing the number of animals required, however, this approach to metabonomics studies has not been fully characterized. In this work liver microdialysis sampling was performed on male Sprague-Dawley rats and the effects of diurnal rhythms, animal activity and anesthesia on the liver extracellular fluid composition examined. Diurnal rhythms and animal activity caused little change in liver metabolism, but anesthesia caused dramatic effects attributed to the hyperglycemia induced by xylazine and isoflurane. This approach was then applied to the characterization of the hepatotoxicity of doxorubicin, an anticancer agent known to induce oxidative stress. In these studies, two probes were implanted in the liver and doxorubicin was dosed through one of the probes. Comparisons were made between the metabolic profiles from the two probes to distinguish basal metabolic effects from those induced by doxorubicin. Doxorubicin altered hepatic metabolism by different mechanisms in anesthetized and awake rats. These studies also provided important implications for the design of future tissue-targeted metabonomics experiments.
Bibliography:http://dx.doi.org/10.1007/s11306-008-0141-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1573-3882
1573-3890
DOI:10.1007/s11306-008-0141-3