Solution and implementation of distributed lifespan models

We consider a population where every individual has a unique lifespan. After expiring of its lifespan the individual has to leave the population. A realistic approach to describe these lifespans is by a continuous distribution. Such distributed lifespan models (DLSMs) were introduced earlier in the...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmacokinetics and pharmacodynamics Vol. 40; no. 6; pp. 639 - 650
Main Authors Koch, Gilbert, Schropp, Johannes
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.12.2013
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider a population where every individual has a unique lifespan. After expiring of its lifespan the individual has to leave the population. A realistic approach to describe these lifespans is by a continuous distribution. Such distributed lifespan models (DLSMs) were introduced earlier in the indirect response context and consist of the mathematical convolution operator to describe the rate of change. Therefore, DLSMs could not directly be implemented in standard PKPD software. In this work we present the solution representation of DLSMs with and without a precursor population and an implementation strategy for DLSMs in ADAPT , NONMEM and MATLAB . We fit hemoglobin measurements from literature and investigate computational properties.
ISSN:1567-567X
1573-8744
DOI:10.1007/s10928-013-9336-y