Molecular study of human sperm RNA: Ropporin and CABYR in asthenozoospermia
Background Sperm motility is an essential aspect of human fertility. Sperm contain an abundance of transcripts, thought to be remnants of mRNA, which comprise a genetic fingerprint and can be considered a historic record of gene expression during spermatogenesis. The aberrant expression of numerous...
Saved in:
Published in | Journal of endocrinological investigation Vol. 41; no. 7; pp. 781 - 787 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background
Sperm motility is an essential aspect of human fertility. Sperm contain an abundance of transcripts, thought to be remnants of mRNA, which comprise a genetic fingerprint and can be considered a historic record of gene expression during spermatogenesis. The aberrant expression of numerous genes has been found to contribute to impaired sperm motility; these include ROPN1 (rhophilin associated tail protein 1), which encodes a component of the fibrous sheath of the mammalian sperm flagella, and CABYR (calcium-binding tyrosine-(Y)-phosphorylation-regulated protein), which plays an important role in calcium activation and modulation. The aim of this study was to investigate ROPN1 and CABYR gene co-expression in asthenozoospermic semen samples in comparison with normozoospermic samples.
Methods
We studied 120 semen samples (60 normozoospermic and 60 asthenozoospermic) from Caucasian patients attending our centre for an andrological check-up. Total RNA was extracted from purified spermatozoa with RNeasy mini kit. ROPN1 and CABYR mRNA expression was analysed using RT-qPCR. Continuous variables were described as means ± standard deviations.
Results
ROPN1 and CABYR mRNA were simultaneously downregulated in asthenozoospermic in comparison with normozoospermic samples. There was also a positive correlation between total progressive motility and ROPN1 and CABYR gene expression and between total motile sperm number and ROPN1 and CABYR gene expression.
Conclusions
The results demonstrated downregulation of both ROPN1 and CABYR in asthenozoospermic samples and importantly, a positive correlation between the expression of the two genes, suggesting that ROPN1 and CABYR co-expression is a prerequisite for normal flagellar function and sperm motility. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1720-8386 0391-4097 1720-8386 |
DOI: | 10.1007/s40618-017-0804-x |