Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT

Purpose To assess virtual non-contrast (VNC) images obtained on a detection-based spectral detector CT scanner and determine how attenuation on VNC images derived from various phases of enhanced CT compare to those obtained from true unenhanced images. Methods In this HIPAA compliant, IRB approved p...

Full description

Saved in:
Bibliographic Details
Published inAbdominal imaging Vol. 42; no. 3; pp. 702 - 709
Main Authors Ananthakrishnan, Lakshmi, Rajiah, Prabhakar, Ahn, Richard, Rassouli, Negin, Xi, Yin, Soesbe, Todd C., Lewis, Matthew A., Lenkinski, Robert E., Leyendecker, John R., Abbara, Suhny
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose To assess virtual non-contrast (VNC) images obtained on a detection-based spectral detector CT scanner and determine how attenuation on VNC images derived from various phases of enhanced CT compare to those obtained from true unenhanced images. Methods In this HIPAA compliant, IRB approved prospective multi-institutional study, 46 patients underwent pre- and post-contrast imaging on a prototype dual-layer spectral detector CT between October 2013 and November 2015, yielding 84 unenhanced and VNC pairs (25 arterial, 39 portal venous/nephrographic, 20 urographic). Mean attenuation was measured by one of three readers in the liver, spleen, kidneys, psoas muscle, abdominal aorta, and subcutaneous fat. Equivalence testing was used to determine if the mean difference between unenhanced and VNC attenuation was less than 5, 10, or 15 HU. VNC image quality was assessed on a 5 point scale. Results Mean difference between unenhanced and VNC attenuation was <15 HU in 92.6%, <10 HU in 75.2%, and <5 HU in 44.4% of all measurements. Unenhanced and VNC attenuation were equivalent in all tissues except fat using a threshold of <10 HU difference ( p  < 0.05). No significant variation was seen between phases. In fat, VNC overestimated the HU relative to unenhanced images. VNC image quality was rated as excellent or good in 84% of arterial phase and 85% of nephrographic phase cases, but only 40% of urographic phase. Conclusion VNC images derived from novel dual layer spectral detector CT demonstrate attenuation values similar to unenhanced images in all tissues evaluated except for subcutaneous fat. Further study is needed to determine if attenuation thresholds currently used clinically for common pathology should be adjusted, particularly for lesions containing fat.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:2366-004X
2366-0058
2366-0058
DOI:10.1007/s00261-016-1036-9