Superhard composites of cubic silicon nitride and diamond
Powder mixture of graphite and silicon nitride with hexagonal structure (α/β-Si3N4) was ball-milled in nitrogen and compressed under ~16GPa/1800°C and ~18GPa/2000°C, to investigate the possibility for replacing Si atoms by C atoms in cubic spinel silicon nitride (c-Si3N4). The sintered samples were...
Saved in:
Published in | Diamond and related materials Vol. 27-28; pp. 49 - 53 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Powder mixture of graphite and silicon nitride with hexagonal structure (α/β-Si3N4) was ball-milled in nitrogen and compressed under ~16GPa/1800°C and ~18GPa/2000°C, to investigate the possibility for replacing Si atoms by C atoms in cubic spinel silicon nitride (c-Si3N4). The sintered samples were characterized by X-ray diffraction (XRD), hardness measurement, optical microscope, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results show that the well-sintered compacts were composed of nanocrystalline c-Si3N4 and nanocrystalline diamond, and neither C3N4 and CSi2N4 nor other reaction products of Si3N4 and C were observed. Vickers hardness test shows that the average hardness of the samples is 41–42GPa. As a comparison, phase-pure c-Si3N4 bulks also have been synthesized and their hardness was confirmed to be about 31GPa. The pure c-Si3N4 sintered bulks exhibit a high frangibility, but their fracture toughness could be largely improved by adding carbon (nanocrystalline diamond) in the sintered compacts.
► Well-sintered compacts of c-Si3N4 and diamond composite have been synthesized. ► Nanodiamond improved the sintered compacts in hardness and fracture toughness. ► Vickers hardness of c-Si3N4 was confirmed to be 31GPa by synthesized pure bulks. ► Si atoms in Si3N4 cannot be replaced by C atoms up to 18GPa and 2000°C. |
---|---|
AbstractList | Powder mixture of graphite and silicon nitride with hexagonal structure (α/β-Si3N4) was ball-milled in nitrogen and compressed under ~16GPa/1800°C and ~18GPa/2000°C, to investigate the possibility for replacing Si atoms by C atoms in cubic spinel silicon nitride (c-Si3N4). The sintered samples were characterized by X-ray diffraction (XRD), hardness measurement, optical microscope, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results show that the well-sintered compacts were composed of nanocrystalline c-Si3N4 and nanocrystalline diamond, and neither C3N4 and CSi2N4 nor other reaction products of Si3N4 and C were observed. Vickers hardness test shows that the average hardness of the samples is 41–42GPa. As a comparison, phase-pure c-Si3N4 bulks also have been synthesized and their hardness was confirmed to be about 31GPa. The pure c-Si3N4 sintered bulks exhibit a high frangibility, but their fracture toughness could be largely improved by adding carbon (nanocrystalline diamond) in the sintered compacts.
► Well-sintered compacts of c-Si3N4 and diamond composite have been synthesized. ► Nanodiamond improved the sintered compacts in hardness and fracture toughness. ► Vickers hardness of c-Si3N4 was confirmed to be 31GPa by synthesized pure bulks. ► Si atoms in Si3N4 cannot be replaced by C atoms up to 18GPa and 2000°C. Powder mixture of graphite and silicon nitride with hexagonal structure ([alpha]/[beta]-Si3N4) was ball-milled in nitrogen and compressed under ~ 16 GPa/1800 degree C and ~ 18 GPa/2000 degree C, to investigate the possibility for replacing Si atoms by C atoms in cubic spinel silicon nitride (c-Si3N4). The sintered samples were characterized by X-ray diffraction (XRD), hardness measurement, optical microscope, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results show that the well-sintered compacts were composed of nanocrystalline c-Si3N4 and nanocrystalline diamond, and neither C3N4 and CSi2N4 nor other reaction products of Si3N4 and C were observed. Vickers hardness test shows that the average hardness of the samples is 41-42 GPa. As a comparison, phase-pure c-Si3N4 bulks also have been synthesized and their hardness was confirmed to be about 31 GPa. The pure c-Si3N4 sintered bulks exhibit a high frangibility, but their fracture toughness could be largely improved by adding carbon (nanocrystalline diamond) in the sintered compacts. |
Author | Wang, Wendan He, Duanwei Liu, Lei Tang, Mingjun Li, Fengjiao Bi, Yan |
Author_xml | – sequence: 1 givenname: Wendan surname: Wang fullname: Wang, Wendan organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China – sequence: 2 givenname: Duanwei surname: He fullname: He, Duanwei email: duanweihe@scu.edu.cn organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China – sequence: 3 givenname: Mingjun surname: Tang fullname: Tang, Mingjun organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China – sequence: 4 givenname: Fengjiao surname: Li fullname: Li, Fengjiao organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China – sequence: 5 givenname: Lei surname: Liu fullname: Liu, Lei organization: Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900, China – sequence: 6 givenname: Yan surname: Bi fullname: Bi, Yan organization: Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26219902$$DView record in Pascal Francis |
BookMark | eNqFkMFq3DAQhkVJoZukj1DwpZCLnZFkyxY9lBDaphDoIe1ZKKMRncUrbSVvIG9fh1166CWXmcv3_cP85-Is5URCfJDQSZDmetsF9rucQqdAqg6GDqR-IzZyGm0LYNSZ2IBVQ2uNHt6J81q3sIK2lxthHw57Kr99CQ3m3T5XXqg2OTZ4eGRsKs-MOTWJl8KBGp9Cczp2Kd5GP1d6f9oX4tfXLz9v79r7H9--397ct6hHtbS979GisgC4zgjoe-NNDGTVNPXajJo0mXEiq40NJj5GOxg7xSEYNeoB9IW4OubuS_5zoLq4HVekefaJ8qE6CZNSqpdGrujHE-or-jkWn5Cr2xfe-fLslFHSWlArNxw5LLnWQvEfIsG9VOq27vSle6nUweDWSlfv038e8uIXzmkpnudX7c9Hm9a2npiKq8iUkAIXwsWFzK8k_AW5N5Zi |
CitedBy_id | crossref_primary_10_1063_5_0070380 crossref_primary_10_1016_j_ssc_2022_114742 crossref_primary_10_1088_1674_1056_ad23d4 crossref_primary_10_1016_j_jeurceramsoc_2019_09_021 crossref_primary_10_4028_www_scientific_net_AMR_1120_1121_378 crossref_primary_10_1063_1_4979312 crossref_primary_10_1007_s11434_014_0636_4 crossref_primary_10_1016_j_scriptamat_2020_09_021 crossref_primary_10_1063_5_0045545 crossref_primary_10_1021_acs_cgd_1c01501 crossref_primary_10_1142_S0217979219500462 crossref_primary_10_2139_ssrn_4123843 crossref_primary_10_1063_1_4929728 crossref_primary_10_1038_s41598_019_46709_4 crossref_primary_10_1016_j_jeurceramsoc_2022_10_052 crossref_primary_10_1088_0256_307X_37_5_058101 crossref_primary_10_3390_cryst11060614 crossref_primary_10_1016_j_scriptamat_2018_01_034 crossref_primary_10_1088_1674_1056_27_5_056101 crossref_primary_10_1063_1_5087754 crossref_primary_10_1088_1674_1056_27_5_056105 crossref_primary_10_1088_1674_1056_ab9dec crossref_primary_10_2109_jcersj2_16097 crossref_primary_10_1016_j_mtcomm_2024_108320 crossref_primary_10_1016_j_jeurceramsoc_2021_09_036 |
Cites_doi | 10.1111/j.1151-2916.2002.tb00044.x 10.1209/epl/i2000-00337-8 10.1103/PhysRevB.32.7988 10.7498/aps.59.3107 10.1016/j.diamond.2011.03.034 10.1002/adma.200501872 10.7498/aps.57.5429 10.1038/22493 10.1016/S0921-5093(00)00909-6 10.1146/annurev.physiol.63.1.1 10.1002/1521-4095(200006)12:12<883::AID-ADMA883>3.0.CO;2-C 10.1103/PhysRevB.50.10362 10.1016/0254-0584(95)01607-V 10.1039/b517778m 10.1103/PhysRevB.71.052103 10.1103/PhysRevB.72.014102 10.1088/0953-8984/13/22/111 10.1016/j.mser.2007.10.001 10.1111/j.1151-2916.2002.tb00042.x 10.1088/0953-8984/13/4/302 10.1002/1521-3773(20020301)41:5<789::AID-ANIE789>3.0.CO;2-W 10.1126/science.245.4920.841 10.1063/1.351530 10.1103/PhysRevB.69.052103 10.1063/1.1832756 10.1016/j.ccr.2004.02.001 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.diamond.2012.05.013 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering Chemistry Physics |
EISSN | 1879-0062 |
EndPage | 53 |
ExternalDocumentID | 26219902 10_1016_j_diamond_2012_05_013 S0925963512001380 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29G 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c372t-4a4c9c2900cc29f0ca46a6fde928843673e3e678e9369d6fbf95698f5d6273503 |
IEDL.DBID | .~1 |
ISSN | 0925-9635 |
IngestDate | Tue Aug 05 09:16:47 EDT 2025 Mon Jul 21 09:15:02 EDT 2025 Tue Jul 01 00:37:44 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Fri Feb 23 02:15:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cubic silicon nitride Nanodiamond High pressure Cubic lattices Vickers hardness Synthetic diamond XRD Nanostructures Optical microscopy Hexagonal crystals Hardness testing Carbon nitrides Silicon Nanocrystal Scanning electron microscopy Reaction product Silicon nitride Mechanical properties Carbon Polycrystalline diamond Composite materials Transmission electron microscopy Spinels Sintering Graphite Nanostructured materials |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-4a4c9c2900cc29f0ca46a6fde928843673e3e678e9369d6fbf95698f5d6273503 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1082224161 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1082224161 pascalfrancis_primary_26219902 crossref_primary_10_1016_j_diamond_2012_05_013 crossref_citationtrail_10_1016_j_diamond_2012_05_013 elsevier_sciencedirect_doi_10_1016_j_diamond_2012_05_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-01 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Diamond and related materials |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fang, Ohfuji, Shinmei, Irifune (bb0040) 2011; 20 Liu, Wentzcovitch (bb0015) 1994; 50 Gao, Xu, Liu (bb0115) 2005; 71 Jiang, Ståhl, Berg, Frost, Zhou, Shi (bb0070) 2000; 51 Horvath-Bordon, Riedel, Zerr, McMillan, Auffermann, Prots (bb0035) 2006; 35 Kroke, Schwarz (bb0020) 2004; 248 Ching, Mo, Ouyang, Rulis, Tanaka, Yoshiya (bb0055) 2002; 85 Liu, Cohen (bb0010) 1989; 245 He, Guo, Yu, Liu, Tian, Wang (bb0120) 2004; 85 Zerr, Miehe, Serghiou, Schwarz, Kroke, Riedel, Fue, Kroll, Boehler (bb0045) 1999; 400 Jiang, Lindelov, Gerward, Ståhl, Recio, Mori-Sanchez, Carlson, Mezouar, Dooryhee, Fitch, Frost (bb0085) 2002; 65 Savvides, Bell (bb0145) 1992; 72 Paszkowicz, Minikayev, Piszora, Knapp, Bähtz, Recio, Marqués, Mori-Sánchez, Gerward, Jiang (bb0090) 2004; 69 Wang, He, Fang, Chen, Li, Zhang (bb0130) 2008; 57 Goglio, Foy, Demazeau (bb0025) 2008; 58 Cohen (bb0005) 1985; 32 Sung, Sung (bb0030) 1996; 43 Zerr, Riedel, Sekine, Lowther, Ching (bb0060) 2006; 18 Dong, Deslippe, Sankey, Soignard, McMillan (bb0110) 2003; 67 Ching, Mo, Tanaka, Yoshiya (bb0050) 2001; 63 Kiefer, Shieh, Duffy, Sekine (bb0095) 2005; 72 Soignard, Somayazulu, Dong, Sankey, McMillan (bb0080) 2001; 13 Zerr, Kempf, Schwarz, Kroke, Göken, Riedel (bb0105) 2002; 85 Schwarz, Zerr, Kroke, Miehe, Chen, Heck, Thybusch, Poe, Riedel (bb0135) 2002; 41 Schwarz, Miehe, Zerr, Kroke, Poe, Fuess, Riedel (bb0075) 2000; 12 Jiang, Kragh, Frost, Ståhl, Lindelov (bb0100) 2001; 13 Wang, He, Wang, Wang, Dong, Chen (bb0125) 2009; 59 Zhang, Chen, Du, Yang, Ma (bb0065) 2008; 103 Kim (bb0140) 2000; A289 Fang (10.1016/j.diamond.2012.05.013_bb0040) 2011; 20 Jiang (10.1016/j.diamond.2012.05.013_bb0085) 2002; 65 Savvides (10.1016/j.diamond.2012.05.013_bb0145) 1992; 72 Jiang (10.1016/j.diamond.2012.05.013_bb0070) 2000; 51 Jiang (10.1016/j.diamond.2012.05.013_bb0100) 2001; 13 Liu (10.1016/j.diamond.2012.05.013_bb0015) 1994; 50 Schwarz (10.1016/j.diamond.2012.05.013_bb0075) 2000; 12 Gao (10.1016/j.diamond.2012.05.013_bb0115) 2005; 71 Zerr (10.1016/j.diamond.2012.05.013_bb0045) 1999; 400 Paszkowicz (10.1016/j.diamond.2012.05.013_bb0090) 2004; 69 Schwarz (10.1016/j.diamond.2012.05.013_bb0135) 2002; 41 Horvath-Bordon (10.1016/j.diamond.2012.05.013_bb0035) 2006; 35 Zhang (10.1016/j.diamond.2012.05.013_bb0065) 2008; 103 Liu (10.1016/j.diamond.2012.05.013_bb0010) 1989; 245 Kiefer (10.1016/j.diamond.2012.05.013_bb0095) 2005; 72 Sung (10.1016/j.diamond.2012.05.013_bb0030) 1996; 43 Soignard (10.1016/j.diamond.2012.05.013_bb0080) 2001; 13 Goglio (10.1016/j.diamond.2012.05.013_bb0025) 2008; 58 Kim (10.1016/j.diamond.2012.05.013_bb0140) 2000; A289 Kroke (10.1016/j.diamond.2012.05.013_bb0020) 2004; 248 Wang (10.1016/j.diamond.2012.05.013_bb0125) 2009; 59 Ching (10.1016/j.diamond.2012.05.013_bb0050) 2001; 63 Ching (10.1016/j.diamond.2012.05.013_bb0055) 2002; 85 Zerr (10.1016/j.diamond.2012.05.013_bb0105) 2002; 85 He (10.1016/j.diamond.2012.05.013_bb0120) 2004; 85 Cohen (10.1016/j.diamond.2012.05.013_bb0005) 1985; 32 Zerr (10.1016/j.diamond.2012.05.013_bb0060) 2006; 18 Dong (10.1016/j.diamond.2012.05.013_bb0110) 2003; 67 Wang (10.1016/j.diamond.2012.05.013_bb0130) 2008; 57 |
References_xml | – volume: 51 start-page: 62 year: 2000 end-page: 67 ident: bb0070 publication-title: Eur. Phys. Lett. – volume: 41 start-page: 789 year: 2002 end-page: 793 ident: bb0135 publication-title: Angew. Chem. Int. Ed. – volume: 85 start-page: 5571 year: 2004 end-page: 5573 ident: bb0120 publication-title: Appl. Phys. Lett. – volume: 65 start-page: 1 year: 2002 end-page: 4 ident: bb0085 publication-title: Phys. Rev. B – volume: 57 start-page: 5429 year: 2008 end-page: 5434 ident: bb0130 publication-title: Acta Phys. Sin. – volume: 103 start-page: 1 year: 2008 end-page: 5 ident: bb0065 publication-title: J. Appl. Phys. – volume: 69 start-page: 1 year: 2004 end-page: 4 ident: bb0090 publication-title: Phys. Rev. B – volume: 85 start-page: 86 year: 2002 end-page: 90 ident: bb0105 publication-title: J. Am. Ceram. Soc. – volume: 32 start-page: 7988 year: 1985 end-page: 7991 ident: bb0005 publication-title: Phys. Rev. B – volume: 35 start-page: 987 year: 2006 end-page: 1014 ident: bb0035 publication-title: Chem. Soc. Rev. – volume: 67 start-page: 1 year: 2003 end-page: 7 ident: bb0110 publication-title: Phys. Rev. B – volume: 20 start-page: 819 year: 2011 end-page: 825 ident: bb0040 publication-title: Diamond Relat. Mater. – volume: 58 start-page: 195 year: 2008 end-page: 227 ident: bb0025 publication-title: Mater. Sci. Eng. R. – volume: 50 start-page: 10362 year: 1994 end-page: 10365 ident: bb0015 publication-title: Phys. Rev. B – volume: 71 start-page: 1 year: 2005 end-page: 4 ident: bb0115 publication-title: Phys. Rev. B – volume: 245 start-page: 841 year: 1989 end-page: 842 ident: bb0010 publication-title: Science – volume: 63 start-page: 1 year: 2001 end-page: 4 ident: bb0050 publication-title: Phys. Rev. B – volume: 248 start-page: 493 year: 2004 end-page: 532 ident: bb0020 publication-title: Coord. Chem. Rev. – volume: 85 start-page: 75 year: 2002 end-page: 80 ident: bb0055 publication-title: J. Am. Ceram. Soc. – volume: 72 start-page: 1 year: 2005 end-page: 10 ident: bb0095 publication-title: Phys. Rev. B – volume: 18 start-page: 2933 year: 2006 end-page: 2948 ident: bb0060 publication-title: Adv. Mater. – volume: A289 start-page: 30 year: 2000 end-page: 33 ident: bb0140 publication-title: Mater. Sci. Eng. – volume: 59 start-page: 3107 year: 2009 end-page: 3115 ident: bb0125 publication-title: Acta Phys. Sin. – volume: 13 start-page: L515 year: 2001 end-page: L520 ident: bb0100 publication-title: J. Phys. Condens. Matter – volume: 43 start-page: 1 year: 1996 end-page: 18 ident: bb0030 publication-title: Mater. Chem. Phys. – volume: 400 start-page: 340 year: 1999 end-page: 342 ident: bb0045 publication-title: Nature – volume: 12 start-page: 883 year: 2000 end-page: 887 ident: bb0075 publication-title: Adv. Mater. – volume: 13 start-page: 557 year: 2001 end-page: 563 ident: bb0080 publication-title: J. Phys. Condens. Matter – volume: 72 start-page: 2791 year: 1992 end-page: 2796 ident: bb0145 publication-title: J. Appl. Phys. – volume: 65 start-page: 1 year: 2002 ident: 10.1016/j.diamond.2012.05.013_bb0085 publication-title: Phys. Rev. B – volume: 85 start-page: 86 year: 2002 ident: 10.1016/j.diamond.2012.05.013_bb0105 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2002.tb00044.x – volume: 67 start-page: 1 year: 2003 ident: 10.1016/j.diamond.2012.05.013_bb0110 publication-title: Phys. Rev. B – volume: 51 start-page: 62 year: 2000 ident: 10.1016/j.diamond.2012.05.013_bb0070 publication-title: Eur. Phys. Lett. doi: 10.1209/epl/i2000-00337-8 – volume: 32 start-page: 7988 year: 1985 ident: 10.1016/j.diamond.2012.05.013_bb0005 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.32.7988 – volume: 103 start-page: 1 year: 2008 ident: 10.1016/j.diamond.2012.05.013_bb0065 publication-title: J. Appl. Phys. – volume: 59 start-page: 3107 year: 2009 ident: 10.1016/j.diamond.2012.05.013_bb0125 publication-title: Acta Phys. Sin. doi: 10.7498/aps.59.3107 – volume: 20 start-page: 819 year: 2011 ident: 10.1016/j.diamond.2012.05.013_bb0040 publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2011.03.034 – volume: 18 start-page: 2933 year: 2006 ident: 10.1016/j.diamond.2012.05.013_bb0060 publication-title: Adv. Mater. doi: 10.1002/adma.200501872 – volume: 57 start-page: 5429 year: 2008 ident: 10.1016/j.diamond.2012.05.013_bb0130 publication-title: Acta Phys. Sin. doi: 10.7498/aps.57.5429 – volume: 400 start-page: 340 year: 1999 ident: 10.1016/j.diamond.2012.05.013_bb0045 publication-title: Nature doi: 10.1038/22493 – volume: A289 start-page: 30 year: 2000 ident: 10.1016/j.diamond.2012.05.013_bb0140 publication-title: Mater. Sci. Eng. doi: 10.1016/S0921-5093(00)00909-6 – volume: 63 start-page: 1 year: 2001 ident: 10.1016/j.diamond.2012.05.013_bb0050 publication-title: Phys. Rev. B doi: 10.1146/annurev.physiol.63.1.1 – volume: 12 start-page: 883 year: 2000 ident: 10.1016/j.diamond.2012.05.013_bb0075 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200006)12:12<883::AID-ADMA883>3.0.CO;2-C – volume: 50 start-page: 10362 year: 1994 ident: 10.1016/j.diamond.2012.05.013_bb0015 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.10362 – volume: 43 start-page: 1 year: 1996 ident: 10.1016/j.diamond.2012.05.013_bb0030 publication-title: Mater. Chem. Phys. doi: 10.1016/0254-0584(95)01607-V – volume: 35 start-page: 987 year: 2006 ident: 10.1016/j.diamond.2012.05.013_bb0035 publication-title: Chem. Soc. Rev. doi: 10.1039/b517778m – volume: 71 start-page: 1 year: 2005 ident: 10.1016/j.diamond.2012.05.013_bb0115 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.052103 – volume: 72 start-page: 1 year: 2005 ident: 10.1016/j.diamond.2012.05.013_bb0095 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.014102 – volume: 13 start-page: L515 year: 2001 ident: 10.1016/j.diamond.2012.05.013_bb0100 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/13/22/111 – volume: 58 start-page: 195 year: 2008 ident: 10.1016/j.diamond.2012.05.013_bb0025 publication-title: Mater. Sci. Eng. R. doi: 10.1016/j.mser.2007.10.001 – volume: 85 start-page: 75 year: 2002 ident: 10.1016/j.diamond.2012.05.013_bb0055 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2002.tb00042.x – volume: 13 start-page: 557 year: 2001 ident: 10.1016/j.diamond.2012.05.013_bb0080 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/13/4/302 – volume: 41 start-page: 789 year: 2002 ident: 10.1016/j.diamond.2012.05.013_bb0135 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020301)41:5<789::AID-ANIE789>3.0.CO;2-W – volume: 245 start-page: 841 year: 1989 ident: 10.1016/j.diamond.2012.05.013_bb0010 publication-title: Science doi: 10.1126/science.245.4920.841 – volume: 72 start-page: 2791 year: 1992 ident: 10.1016/j.diamond.2012.05.013_bb0145 publication-title: J. Appl. Phys. doi: 10.1063/1.351530 – volume: 69 start-page: 1 year: 2004 ident: 10.1016/j.diamond.2012.05.013_bb0090 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.052103 – volume: 85 start-page: 5571 year: 2004 ident: 10.1016/j.diamond.2012.05.013_bb0120 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1832756 – volume: 248 start-page: 493 year: 2004 ident: 10.1016/j.diamond.2012.05.013_bb0020 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2004.02.001 |
SSID | ssj0012941 |
Score | 2.1716192 |
Snippet | Powder mixture of graphite and silicon nitride with hexagonal structure (α/β-Si3N4) was ball-milled in nitrogen and compressed under ~16GPa/1800°C and... Powder mixture of graphite and silicon nitride with hexagonal structure ([alpha]/[beta]-Si3N4) was ball-milled in nitrogen and compressed under ~ 16 GPa/1800... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 49 |
SubjectTerms | Atomic structure Carbon Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Cubic silicon nitride Exact sciences and technology Fullerenes and related materials; diamonds, graphite Hardness High pressure Materials science Mechanical and acoustical properties Nanocrystalline materials Nanocrystals Nanodiamond Nanoscale materials and structures: fabrication and characterization Optical microscopes Physical properties of thin films, nonelectronic Physics Scanning electron microscopy Silicon nitride Sintering Specific materials Structure and morphology; thickness Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology |
Title | Superhard composites of cubic silicon nitride and diamond |
URI | https://dx.doi.org/10.1016/j.diamond.2012.05.013 https://www.proquest.com/docview/1082224161 |
Volume | 27-28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KR9nKKF220mxt0KCvThxJlu3HEtZmC-vD2rK-CUmWwKU4IR8Pe9nfvjt_ZCtlFPpiY6OzxN357iSd7gdwZg1VHLFJlDmhIul5iKywLrIytX5sE-HrBbfvV2p6K7_dJXc7MOnOwlBaZWv7G5teW-v2zajl5mhRlqPrOMfQHf3lmNfbbTRvlzIlLR_-3qZ5oDur0SupcUSt_57iGd0PUQQobCoYSkuCVMBT_M8_vV2YFXItNHAXTyx37Y4uDuGgjSPZeTPUd7Djqx68nnTwbT3Y_6fSYA_2LmsE31_vIb_eLPySzloxSiennC2_YvPA3MaWjq3KB9SNiuGfviwLz0xVsHb8H-D24svNZBq1-AmREylfR9JIlzuex7HDa4idkcqoUPicZ5kUKhVeeHRWnkD9ChVswMlSnoWkUBjUJLE4gt1qXvljYDILJrPB4jc4UsrcJwEJbMHj1KhU9kF2XNOuLS5OGBcPussiu9ftYDUxW8eJRmb3YbglWzTVNZ4jyDqR6EdqotEDPEc6eCTCbYdcodXOY96Hz51MNcqKNk5M5eebFRVR5RTqqPHHl_f_Cd7QU5PqewK76-XGn2JAs7aDWmMH8Or862x6RffZj5-zP9xG9mg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQQQrAUsTyKkeCYXa_tOMmBAyqULX1c2kq9GduxpVRVdrXZFeqFP8UfZJw4CxVClZB6ySHR2KOZyczYHs8H8M7o0HHEpEluuUyEYz4x3NjEiMy4iUm5azfcjo7l9Ex8PU_PN-BnfxcmlFVG39_59NZbxzfjKM3xvKrGJ7TA1B3j5YS1x200VlYeuKvvuG5rPux_QiW_Z2zv8-nuNInQAonlGVsmQgtbWFZQavHpqdVCaulLV7A8F1xm3HGHftwFvLtSeuNxHVHkPi0lxvuUchz3DtwV6C4CbMLox7quBONnC5cZuEsCe7-vDY0vRqhztK7QoTTsQYaOofxfAfHhXDeoJt_ha_wVKtr4t_cYHsXElXzsZPMENlw9gK3dHi9uAA_-aG04gHtfWsjgq6dQnKzmbhEud5FQvx6KxFxDZp7YlaksaapLNMaaoGtZVKUjui5J5H8bzm5Fqs9gs57V7jkQkXudG29wDIaUonCpRwJTMpppmYkhiF5qysZu5gFU41L1ZWsXKjKrgrAVTRUKewijNdm8a-dxE0Heq0Rds0uFIecm0p1rKlxPyCSGiYKyIbztdapQV-GkRtdutmpC11YWcis5efH_87-Brenp0aE63D8-eAn3w5euzvgVbC4XK_cas6ml2Wmtl8C32_5dfgH_gC96 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superhard+composites+of+cubic+silicon+nitride+and+diamond&rft.jtitle=Diamond+and+related+materials&rft.au=WENDAN+WANG&rft.au=DUANWEI+HE&rft.au=MINGJUN+TANG&rft.au=FENGJIAO+LI&rft.date=2012-07-01&rft.pub=Elsevier&rft.issn=0925-9635&rft.volume=27-28&rft.spage=49&rft.epage=53&rft_id=info:doi/10.1016%2Fj.diamond.2012.05.013&rft.externalDBID=n%2Fa&rft.externalDocID=26219902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9635&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9635&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9635&client=summon |