Superhard composites of cubic silicon nitride and diamond

Powder mixture of graphite and silicon nitride with hexagonal structure (α/β-Si3N4) was ball-milled in nitrogen and compressed under ~16GPa/1800°C and ~18GPa/2000°C, to investigate the possibility for replacing Si atoms by C atoms in cubic spinel silicon nitride (c-Si3N4). The sintered samples were...

Full description

Saved in:
Bibliographic Details
Published inDiamond and related materials Vol. 27-28; pp. 49 - 53
Main Authors Wang, Wendan, He, Duanwei, Tang, Mingjun, Li, Fengjiao, Liu, Lei, Bi, Yan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Powder mixture of graphite and silicon nitride with hexagonal structure (α/β-Si3N4) was ball-milled in nitrogen and compressed under ~16GPa/1800°C and ~18GPa/2000°C, to investigate the possibility for replacing Si atoms by C atoms in cubic spinel silicon nitride (c-Si3N4). The sintered samples were characterized by X-ray diffraction (XRD), hardness measurement, optical microscope, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results show that the well-sintered compacts were composed of nanocrystalline c-Si3N4 and nanocrystalline diamond, and neither C3N4 and CSi2N4 nor other reaction products of Si3N4 and C were observed. Vickers hardness test shows that the average hardness of the samples is 41–42GPa. As a comparison, phase-pure c-Si3N4 bulks also have been synthesized and their hardness was confirmed to be about 31GPa. The pure c-Si3N4 sintered bulks exhibit a high frangibility, but their fracture toughness could be largely improved by adding carbon (nanocrystalline diamond) in the sintered compacts. ► Well-sintered compacts of c-Si3N4 and diamond composite have been synthesized. ► Nanodiamond improved the sintered compacts in hardness and fracture toughness. ► Vickers hardness of c-Si3N4 was confirmed to be 31GPa by synthesized pure bulks. ► Si atoms in Si3N4 cannot be replaced by C atoms up to 18GPa and 2000°C.
AbstractList Powder mixture of graphite and silicon nitride with hexagonal structure (α/β-Si3N4) was ball-milled in nitrogen and compressed under ~16GPa/1800°C and ~18GPa/2000°C, to investigate the possibility for replacing Si atoms by C atoms in cubic spinel silicon nitride (c-Si3N4). The sintered samples were characterized by X-ray diffraction (XRD), hardness measurement, optical microscope, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results show that the well-sintered compacts were composed of nanocrystalline c-Si3N4 and nanocrystalline diamond, and neither C3N4 and CSi2N4 nor other reaction products of Si3N4 and C were observed. Vickers hardness test shows that the average hardness of the samples is 41–42GPa. As a comparison, phase-pure c-Si3N4 bulks also have been synthesized and their hardness was confirmed to be about 31GPa. The pure c-Si3N4 sintered bulks exhibit a high frangibility, but their fracture toughness could be largely improved by adding carbon (nanocrystalline diamond) in the sintered compacts. ► Well-sintered compacts of c-Si3N4 and diamond composite have been synthesized. ► Nanodiamond improved the sintered compacts in hardness and fracture toughness. ► Vickers hardness of c-Si3N4 was confirmed to be 31GPa by synthesized pure bulks. ► Si atoms in Si3N4 cannot be replaced by C atoms up to 18GPa and 2000°C.
Powder mixture of graphite and silicon nitride with hexagonal structure ([alpha]/[beta]-Si3N4) was ball-milled in nitrogen and compressed under ~ 16 GPa/1800 degree C and ~ 18 GPa/2000 degree C, to investigate the possibility for replacing Si atoms by C atoms in cubic spinel silicon nitride (c-Si3N4). The sintered samples were characterized by X-ray diffraction (XRD), hardness measurement, optical microscope, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results show that the well-sintered compacts were composed of nanocrystalline c-Si3N4 and nanocrystalline diamond, and neither C3N4 and CSi2N4 nor other reaction products of Si3N4 and C were observed. Vickers hardness test shows that the average hardness of the samples is 41-42 GPa. As a comparison, phase-pure c-Si3N4 bulks also have been synthesized and their hardness was confirmed to be about 31 GPa. The pure c-Si3N4 sintered bulks exhibit a high frangibility, but their fracture toughness could be largely improved by adding carbon (nanocrystalline diamond) in the sintered compacts.
Author Wang, Wendan
He, Duanwei
Liu, Lei
Tang, Mingjun
Li, Fengjiao
Bi, Yan
Author_xml – sequence: 1
  givenname: Wendan
  surname: Wang
  fullname: Wang, Wendan
  organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
– sequence: 2
  givenname: Duanwei
  surname: He
  fullname: He, Duanwei
  email: duanweihe@scu.edu.cn
  organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
– sequence: 3
  givenname: Mingjun
  surname: Tang
  fullname: Tang, Mingjun
  organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
– sequence: 4
  givenname: Fengjiao
  surname: Li
  fullname: Li, Fengjiao
  organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
– sequence: 5
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
  organization: Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900, China
– sequence: 6
  givenname: Yan
  surname: Bi
  fullname: Bi, Yan
  organization: Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26219902$$DView record in Pascal Francis
BookMark eNqFkMFq3DAQhkVJoZukj1DwpZCLnZFkyxY9lBDaphDoIe1ZKKMRncUrbSVvIG9fh1166CWXmcv3_cP85-Is5URCfJDQSZDmetsF9rucQqdAqg6GDqR-IzZyGm0LYNSZ2IBVQ2uNHt6J81q3sIK2lxthHw57Kr99CQ3m3T5XXqg2OTZ4eGRsKs-MOTWJl8KBGp9Cczp2Kd5GP1d6f9oX4tfXLz9v79r7H9--397ct6hHtbS979GisgC4zgjoe-NNDGTVNPXajJo0mXEiq40NJj5GOxg7xSEYNeoB9IW4OubuS_5zoLq4HVekefaJ8qE6CZNSqpdGrujHE-or-jkWn5Cr2xfe-fLslFHSWlArNxw5LLnWQvEfIsG9VOq27vSle6nUweDWSlfv038e8uIXzmkpnudX7c9Hm9a2npiKq8iUkAIXwsWFzK8k_AW5N5Zi
CitedBy_id crossref_primary_10_1063_5_0070380
crossref_primary_10_1016_j_ssc_2022_114742
crossref_primary_10_1088_1674_1056_ad23d4
crossref_primary_10_1016_j_jeurceramsoc_2019_09_021
crossref_primary_10_4028_www_scientific_net_AMR_1120_1121_378
crossref_primary_10_1063_1_4979312
crossref_primary_10_1007_s11434_014_0636_4
crossref_primary_10_1016_j_scriptamat_2020_09_021
crossref_primary_10_1063_5_0045545
crossref_primary_10_1021_acs_cgd_1c01501
crossref_primary_10_1142_S0217979219500462
crossref_primary_10_2139_ssrn_4123843
crossref_primary_10_1063_1_4929728
crossref_primary_10_1038_s41598_019_46709_4
crossref_primary_10_1016_j_jeurceramsoc_2022_10_052
crossref_primary_10_1088_0256_307X_37_5_058101
crossref_primary_10_3390_cryst11060614
crossref_primary_10_1016_j_scriptamat_2018_01_034
crossref_primary_10_1088_1674_1056_27_5_056101
crossref_primary_10_1063_1_5087754
crossref_primary_10_1088_1674_1056_27_5_056105
crossref_primary_10_1088_1674_1056_ab9dec
crossref_primary_10_2109_jcersj2_16097
crossref_primary_10_1016_j_mtcomm_2024_108320
crossref_primary_10_1016_j_jeurceramsoc_2021_09_036
Cites_doi 10.1111/j.1151-2916.2002.tb00044.x
10.1209/epl/i2000-00337-8
10.1103/PhysRevB.32.7988
10.7498/aps.59.3107
10.1016/j.diamond.2011.03.034
10.1002/adma.200501872
10.7498/aps.57.5429
10.1038/22493
10.1016/S0921-5093(00)00909-6
10.1146/annurev.physiol.63.1.1
10.1002/1521-4095(200006)12:12<883::AID-ADMA883>3.0.CO;2-C
10.1103/PhysRevB.50.10362
10.1016/0254-0584(95)01607-V
10.1039/b517778m
10.1103/PhysRevB.71.052103
10.1103/PhysRevB.72.014102
10.1088/0953-8984/13/22/111
10.1016/j.mser.2007.10.001
10.1111/j.1151-2916.2002.tb00042.x
10.1088/0953-8984/13/4/302
10.1002/1521-3773(20020301)41:5<789::AID-ANIE789>3.0.CO;2-W
10.1126/science.245.4920.841
10.1063/1.351530
10.1103/PhysRevB.69.052103
10.1063/1.1832756
10.1016/j.ccr.2004.02.001
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8BQ
8FD
JG9
DOI 10.1016/j.diamond.2012.05.013
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
Chemistry
Physics
EISSN 1879-0062
EndPage 53
ExternalDocumentID 26219902
10_1016_j_diamond_2012_05_013
S0925963512001380
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29G
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c372t-4a4c9c2900cc29f0ca46a6fde928843673e3e678e9369d6fbf95698f5d6273503
IEDL.DBID .~1
ISSN 0925-9635
IngestDate Tue Aug 05 09:16:47 EDT 2025
Mon Jul 21 09:15:02 EDT 2025
Tue Jul 01 00:37:44 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Fri Feb 23 02:15:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cubic silicon nitride
Nanodiamond
High pressure
Cubic lattices
Vickers hardness
Synthetic diamond
XRD
Nanostructures
Optical microscopy
Hexagonal crystals
Hardness testing
Carbon nitrides
Silicon
Nanocrystal
Scanning electron microscopy
Reaction product
Silicon nitride
Mechanical properties
Carbon
Polycrystalline diamond
Composite materials
Transmission electron microscopy
Spinels
Sintering
Graphite
Nanostructured materials
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-4a4c9c2900cc29f0ca46a6fde928843673e3e678e9369d6fbf95698f5d6273503
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082224161
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1082224161
pascalfrancis_primary_26219902
crossref_primary_10_1016_j_diamond_2012_05_013
crossref_citationtrail_10_1016_j_diamond_2012_05_013
elsevier_sciencedirect_doi_10_1016_j_diamond_2012_05_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Diamond and related materials
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fang, Ohfuji, Shinmei, Irifune (bb0040) 2011; 20
Liu, Wentzcovitch (bb0015) 1994; 50
Gao, Xu, Liu (bb0115) 2005; 71
Jiang, Ståhl, Berg, Frost, Zhou, Shi (bb0070) 2000; 51
Horvath-Bordon, Riedel, Zerr, McMillan, Auffermann, Prots (bb0035) 2006; 35
Kroke, Schwarz (bb0020) 2004; 248
Ching, Mo, Ouyang, Rulis, Tanaka, Yoshiya (bb0055) 2002; 85
Liu, Cohen (bb0010) 1989; 245
He, Guo, Yu, Liu, Tian, Wang (bb0120) 2004; 85
Zerr, Miehe, Serghiou, Schwarz, Kroke, Riedel, Fue, Kroll, Boehler (bb0045) 1999; 400
Jiang, Lindelov, Gerward, Ståhl, Recio, Mori-Sanchez, Carlson, Mezouar, Dooryhee, Fitch, Frost (bb0085) 2002; 65
Savvides, Bell (bb0145) 1992; 72
Paszkowicz, Minikayev, Piszora, Knapp, Bähtz, Recio, Marqués, Mori-Sánchez, Gerward, Jiang (bb0090) 2004; 69
Wang, He, Fang, Chen, Li, Zhang (bb0130) 2008; 57
Goglio, Foy, Demazeau (bb0025) 2008; 58
Cohen (bb0005) 1985; 32
Sung, Sung (bb0030) 1996; 43
Zerr, Riedel, Sekine, Lowther, Ching (bb0060) 2006; 18
Dong, Deslippe, Sankey, Soignard, McMillan (bb0110) 2003; 67
Ching, Mo, Tanaka, Yoshiya (bb0050) 2001; 63
Kiefer, Shieh, Duffy, Sekine (bb0095) 2005; 72
Soignard, Somayazulu, Dong, Sankey, McMillan (bb0080) 2001; 13
Zerr, Kempf, Schwarz, Kroke, Göken, Riedel (bb0105) 2002; 85
Schwarz, Zerr, Kroke, Miehe, Chen, Heck, Thybusch, Poe, Riedel (bb0135) 2002; 41
Schwarz, Miehe, Zerr, Kroke, Poe, Fuess, Riedel (bb0075) 2000; 12
Jiang, Kragh, Frost, Ståhl, Lindelov (bb0100) 2001; 13
Wang, He, Wang, Wang, Dong, Chen (bb0125) 2009; 59
Zhang, Chen, Du, Yang, Ma (bb0065) 2008; 103
Kim (bb0140) 2000; A289
Fang (10.1016/j.diamond.2012.05.013_bb0040) 2011; 20
Jiang (10.1016/j.diamond.2012.05.013_bb0085) 2002; 65
Savvides (10.1016/j.diamond.2012.05.013_bb0145) 1992; 72
Jiang (10.1016/j.diamond.2012.05.013_bb0070) 2000; 51
Jiang (10.1016/j.diamond.2012.05.013_bb0100) 2001; 13
Liu (10.1016/j.diamond.2012.05.013_bb0015) 1994; 50
Schwarz (10.1016/j.diamond.2012.05.013_bb0075) 2000; 12
Gao (10.1016/j.diamond.2012.05.013_bb0115) 2005; 71
Zerr (10.1016/j.diamond.2012.05.013_bb0045) 1999; 400
Paszkowicz (10.1016/j.diamond.2012.05.013_bb0090) 2004; 69
Schwarz (10.1016/j.diamond.2012.05.013_bb0135) 2002; 41
Horvath-Bordon (10.1016/j.diamond.2012.05.013_bb0035) 2006; 35
Zhang (10.1016/j.diamond.2012.05.013_bb0065) 2008; 103
Liu (10.1016/j.diamond.2012.05.013_bb0010) 1989; 245
Kiefer (10.1016/j.diamond.2012.05.013_bb0095) 2005; 72
Sung (10.1016/j.diamond.2012.05.013_bb0030) 1996; 43
Soignard (10.1016/j.diamond.2012.05.013_bb0080) 2001; 13
Goglio (10.1016/j.diamond.2012.05.013_bb0025) 2008; 58
Kim (10.1016/j.diamond.2012.05.013_bb0140) 2000; A289
Kroke (10.1016/j.diamond.2012.05.013_bb0020) 2004; 248
Wang (10.1016/j.diamond.2012.05.013_bb0125) 2009; 59
Ching (10.1016/j.diamond.2012.05.013_bb0050) 2001; 63
Ching (10.1016/j.diamond.2012.05.013_bb0055) 2002; 85
Zerr (10.1016/j.diamond.2012.05.013_bb0105) 2002; 85
He (10.1016/j.diamond.2012.05.013_bb0120) 2004; 85
Cohen (10.1016/j.diamond.2012.05.013_bb0005) 1985; 32
Zerr (10.1016/j.diamond.2012.05.013_bb0060) 2006; 18
Dong (10.1016/j.diamond.2012.05.013_bb0110) 2003; 67
Wang (10.1016/j.diamond.2012.05.013_bb0130) 2008; 57
References_xml – volume: 51
  start-page: 62
  year: 2000
  end-page: 67
  ident: bb0070
  publication-title: Eur. Phys. Lett.
– volume: 41
  start-page: 789
  year: 2002
  end-page: 793
  ident: bb0135
  publication-title: Angew. Chem. Int. Ed.
– volume: 85
  start-page: 5571
  year: 2004
  end-page: 5573
  ident: bb0120
  publication-title: Appl. Phys. Lett.
– volume: 65
  start-page: 1
  year: 2002
  end-page: 4
  ident: bb0085
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 5429
  year: 2008
  end-page: 5434
  ident: bb0130
  publication-title: Acta Phys. Sin.
– volume: 103
  start-page: 1
  year: 2008
  end-page: 5
  ident: bb0065
  publication-title: J. Appl. Phys.
– volume: 69
  start-page: 1
  year: 2004
  end-page: 4
  ident: bb0090
  publication-title: Phys. Rev. B
– volume: 85
  start-page: 86
  year: 2002
  end-page: 90
  ident: bb0105
  publication-title: J. Am. Ceram. Soc.
– volume: 32
  start-page: 7988
  year: 1985
  end-page: 7991
  ident: bb0005
  publication-title: Phys. Rev. B
– volume: 35
  start-page: 987
  year: 2006
  end-page: 1014
  ident: bb0035
  publication-title: Chem. Soc. Rev.
– volume: 67
  start-page: 1
  year: 2003
  end-page: 7
  ident: bb0110
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 819
  year: 2011
  end-page: 825
  ident: bb0040
  publication-title: Diamond Relat. Mater.
– volume: 58
  start-page: 195
  year: 2008
  end-page: 227
  ident: bb0025
  publication-title: Mater. Sci. Eng. R.
– volume: 50
  start-page: 10362
  year: 1994
  end-page: 10365
  ident: bb0015
  publication-title: Phys. Rev. B
– volume: 71
  start-page: 1
  year: 2005
  end-page: 4
  ident: bb0115
  publication-title: Phys. Rev. B
– volume: 245
  start-page: 841
  year: 1989
  end-page: 842
  ident: bb0010
  publication-title: Science
– volume: 63
  start-page: 1
  year: 2001
  end-page: 4
  ident: bb0050
  publication-title: Phys. Rev. B
– volume: 248
  start-page: 493
  year: 2004
  end-page: 532
  ident: bb0020
  publication-title: Coord. Chem. Rev.
– volume: 85
  start-page: 75
  year: 2002
  end-page: 80
  ident: bb0055
  publication-title: J. Am. Ceram. Soc.
– volume: 72
  start-page: 1
  year: 2005
  end-page: 10
  ident: bb0095
  publication-title: Phys. Rev. B
– volume: 18
  start-page: 2933
  year: 2006
  end-page: 2948
  ident: bb0060
  publication-title: Adv. Mater.
– volume: A289
  start-page: 30
  year: 2000
  end-page: 33
  ident: bb0140
  publication-title: Mater. Sci. Eng.
– volume: 59
  start-page: 3107
  year: 2009
  end-page: 3115
  ident: bb0125
  publication-title: Acta Phys. Sin.
– volume: 13
  start-page: L515
  year: 2001
  end-page: L520
  ident: bb0100
  publication-title: J. Phys. Condens. Matter
– volume: 43
  start-page: 1
  year: 1996
  end-page: 18
  ident: bb0030
  publication-title: Mater. Chem. Phys.
– volume: 400
  start-page: 340
  year: 1999
  end-page: 342
  ident: bb0045
  publication-title: Nature
– volume: 12
  start-page: 883
  year: 2000
  end-page: 887
  ident: bb0075
  publication-title: Adv. Mater.
– volume: 13
  start-page: 557
  year: 2001
  end-page: 563
  ident: bb0080
  publication-title: J. Phys. Condens. Matter
– volume: 72
  start-page: 2791
  year: 1992
  end-page: 2796
  ident: bb0145
  publication-title: J. Appl. Phys.
– volume: 65
  start-page: 1
  year: 2002
  ident: 10.1016/j.diamond.2012.05.013_bb0085
  publication-title: Phys. Rev. B
– volume: 85
  start-page: 86
  year: 2002
  ident: 10.1016/j.diamond.2012.05.013_bb0105
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2002.tb00044.x
– volume: 67
  start-page: 1
  year: 2003
  ident: 10.1016/j.diamond.2012.05.013_bb0110
  publication-title: Phys. Rev. B
– volume: 51
  start-page: 62
  year: 2000
  ident: 10.1016/j.diamond.2012.05.013_bb0070
  publication-title: Eur. Phys. Lett.
  doi: 10.1209/epl/i2000-00337-8
– volume: 32
  start-page: 7988
  year: 1985
  ident: 10.1016/j.diamond.2012.05.013_bb0005
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.32.7988
– volume: 103
  start-page: 1
  year: 2008
  ident: 10.1016/j.diamond.2012.05.013_bb0065
  publication-title: J. Appl. Phys.
– volume: 59
  start-page: 3107
  year: 2009
  ident: 10.1016/j.diamond.2012.05.013_bb0125
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.59.3107
– volume: 20
  start-page: 819
  year: 2011
  ident: 10.1016/j.diamond.2012.05.013_bb0040
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2011.03.034
– volume: 18
  start-page: 2933
  year: 2006
  ident: 10.1016/j.diamond.2012.05.013_bb0060
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200501872
– volume: 57
  start-page: 5429
  year: 2008
  ident: 10.1016/j.diamond.2012.05.013_bb0130
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.57.5429
– volume: 400
  start-page: 340
  year: 1999
  ident: 10.1016/j.diamond.2012.05.013_bb0045
  publication-title: Nature
  doi: 10.1038/22493
– volume: A289
  start-page: 30
  year: 2000
  ident: 10.1016/j.diamond.2012.05.013_bb0140
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(00)00909-6
– volume: 63
  start-page: 1
  year: 2001
  ident: 10.1016/j.diamond.2012.05.013_bb0050
  publication-title: Phys. Rev. B
  doi: 10.1146/annurev.physiol.63.1.1
– volume: 12
  start-page: 883
  year: 2000
  ident: 10.1016/j.diamond.2012.05.013_bb0075
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200006)12:12<883::AID-ADMA883>3.0.CO;2-C
– volume: 50
  start-page: 10362
  year: 1994
  ident: 10.1016/j.diamond.2012.05.013_bb0015
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.10362
– volume: 43
  start-page: 1
  year: 1996
  ident: 10.1016/j.diamond.2012.05.013_bb0030
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/0254-0584(95)01607-V
– volume: 35
  start-page: 987
  year: 2006
  ident: 10.1016/j.diamond.2012.05.013_bb0035
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b517778m
– volume: 71
  start-page: 1
  year: 2005
  ident: 10.1016/j.diamond.2012.05.013_bb0115
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.052103
– volume: 72
  start-page: 1
  year: 2005
  ident: 10.1016/j.diamond.2012.05.013_bb0095
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.014102
– volume: 13
  start-page: L515
  year: 2001
  ident: 10.1016/j.diamond.2012.05.013_bb0100
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/13/22/111
– volume: 58
  start-page: 195
  year: 2008
  ident: 10.1016/j.diamond.2012.05.013_bb0025
  publication-title: Mater. Sci. Eng. R.
  doi: 10.1016/j.mser.2007.10.001
– volume: 85
  start-page: 75
  year: 2002
  ident: 10.1016/j.diamond.2012.05.013_bb0055
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2002.tb00042.x
– volume: 13
  start-page: 557
  year: 2001
  ident: 10.1016/j.diamond.2012.05.013_bb0080
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/13/4/302
– volume: 41
  start-page: 789
  year: 2002
  ident: 10.1016/j.diamond.2012.05.013_bb0135
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020301)41:5<789::AID-ANIE789>3.0.CO;2-W
– volume: 245
  start-page: 841
  year: 1989
  ident: 10.1016/j.diamond.2012.05.013_bb0010
  publication-title: Science
  doi: 10.1126/science.245.4920.841
– volume: 72
  start-page: 2791
  year: 1992
  ident: 10.1016/j.diamond.2012.05.013_bb0145
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351530
– volume: 69
  start-page: 1
  year: 2004
  ident: 10.1016/j.diamond.2012.05.013_bb0090
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.052103
– volume: 85
  start-page: 5571
  year: 2004
  ident: 10.1016/j.diamond.2012.05.013_bb0120
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1832756
– volume: 248
  start-page: 493
  year: 2004
  ident: 10.1016/j.diamond.2012.05.013_bb0020
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2004.02.001
SSID ssj0012941
Score 2.1716192
Snippet Powder mixture of graphite and silicon nitride with hexagonal structure (α/β-Si3N4) was ball-milled in nitrogen and compressed under ~16GPa/1800°C and...
Powder mixture of graphite and silicon nitride with hexagonal structure ([alpha]/[beta]-Si3N4) was ball-milled in nitrogen and compressed under ~ 16 GPa/1800...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms Atomic structure
Carbon
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Cubic silicon nitride
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
Hardness
High pressure
Materials science
Mechanical and acoustical properties
Nanocrystalline materials
Nanocrystals
Nanodiamond
Nanoscale materials and structures: fabrication and characterization
Optical microscopes
Physical properties of thin films, nonelectronic
Physics
Scanning electron microscopy
Silicon nitride
Sintering
Specific materials
Structure and morphology; thickness
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Title Superhard composites of cubic silicon nitride and diamond
URI https://dx.doi.org/10.1016/j.diamond.2012.05.013
https://www.proquest.com/docview/1082224161
Volume 27-28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KR9nKKF220mxt0KCvThxJlu3HEtZmC-vD2rK-CUmWwKU4IR8Pe9nfvjt_ZCtlFPpiY6OzxN357iSd7gdwZg1VHLFJlDmhIul5iKywLrIytX5sE-HrBbfvV2p6K7_dJXc7MOnOwlBaZWv7G5teW-v2zajl5mhRlqPrOMfQHf3lmNfbbTRvlzIlLR_-3qZ5oDur0SupcUSt_57iGd0PUQQobCoYSkuCVMBT_M8_vV2YFXItNHAXTyx37Y4uDuGgjSPZeTPUd7Djqx68nnTwbT3Y_6fSYA_2LmsE31_vIb_eLPySzloxSiennC2_YvPA3MaWjq3KB9SNiuGfviwLz0xVsHb8H-D24svNZBq1-AmREylfR9JIlzuex7HDa4idkcqoUPicZ5kUKhVeeHRWnkD9ChVswMlSnoWkUBjUJLE4gt1qXvljYDILJrPB4jc4UsrcJwEJbMHj1KhU9kF2XNOuLS5OGBcPussiu9ftYDUxW8eJRmb3YbglWzTVNZ4jyDqR6EdqotEDPEc6eCTCbYdcodXOY96Hz51MNcqKNk5M5eebFRVR5RTqqPHHl_f_Cd7QU5PqewK76-XGn2JAs7aDWmMH8Or862x6RffZj5-zP9xG9mg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQQQrAUsTyKkeCYXa_tOMmBAyqULX1c2kq9GduxpVRVdrXZFeqFP8UfZJw4CxVClZB6ySHR2KOZyczYHs8H8M7o0HHEpEluuUyEYz4x3NjEiMy4iUm5azfcjo7l9Ex8PU_PN-BnfxcmlFVG39_59NZbxzfjKM3xvKrGJ7TA1B3j5YS1x200VlYeuKvvuG5rPux_QiW_Z2zv8-nuNInQAonlGVsmQgtbWFZQavHpqdVCaulLV7A8F1xm3HGHftwFvLtSeuNxHVHkPi0lxvuUchz3DtwV6C4CbMLox7quBONnC5cZuEsCe7-vDY0vRqhztK7QoTTsQYaOofxfAfHhXDeoJt_ha_wVKtr4t_cYHsXElXzsZPMENlw9gK3dHi9uAA_-aG04gHtfWsjgq6dQnKzmbhEud5FQvx6KxFxDZp7YlaksaapLNMaaoGtZVKUjui5J5H8bzm5Fqs9gs57V7jkQkXudG29wDIaUonCpRwJTMpppmYkhiF5qysZu5gFU41L1ZWsXKjKrgrAVTRUKewijNdm8a-dxE0Heq0Rds0uFIecm0p1rKlxPyCSGiYKyIbztdapQV-GkRtdutmpC11YWcis5efH_87-Brenp0aE63D8-eAn3w5euzvgVbC4XK_cas6ml2Wmtl8C32_5dfgH_gC96
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superhard+composites+of+cubic+silicon+nitride+and+diamond&rft.jtitle=Diamond+and+related+materials&rft.au=WENDAN+WANG&rft.au=DUANWEI+HE&rft.au=MINGJUN+TANG&rft.au=FENGJIAO+LI&rft.date=2012-07-01&rft.pub=Elsevier&rft.issn=0925-9635&rft.volume=27-28&rft.spage=49&rft.epage=53&rft_id=info:doi/10.1016%2Fj.diamond.2012.05.013&rft.externalDBID=n%2Fa&rft.externalDocID=26219902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9635&client=summon