Environmental evaluation of the life cycle of elephant grass fertilization—Cenchrus purpureus (Schumach.) Morrone—using chemical fertilization and biosolids

Law 12305/10, National Solid Waste Policy of Brazil, banned the disposal in landfills of any solid waste that could be converted to another use. Sludge produced at Industrial Wastewater Treatment Plants, which contains components characteristic of fertilizers, falls into this category. This type of...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental monitoring and assessment Vol. 190; no. 1; pp. 30 - 8
Main Authors Neves, Talles Iwasawa, Uyeda, Claudio Augusto, Carvalho, Monica, Abrahão, Raphael
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Law 12305/10, National Solid Waste Policy of Brazil, banned the disposal in landfills of any solid waste that could be converted to another use. Sludge produced at Industrial Wastewater Treatment Plants, which contains components characteristic of fertilizers, falls into this category. This type of sludge, also known as a biosolid, has great potential to replace commercial chemical fertilization. The use of biosolids in agriculture allows for compliance with new legislation, reducing the burden on landfills and reusing a waste product. The present paper utilizes the life cycle assessment methodology to compare the carbon footprint associated with the use of different quantities of biosolid and selected chemical fertilizers in the production of elephant grass. The IPCC 2013 GWP 100a method, which is based on data published by the Intergovernmental Panel on Climate Change, was selected as the environmental assessment method. The method expresses the emissions of greenhouse gases generated, in kilograms of CO 2 equivalent, over a time horizon of 100 years. The biosolid quantities used were based on the Brazilian Environment Council Resolution 375. The chemical fertilizer used contained urea, simple superphosphate, and potassium chloride. The use of biosolids in the amounts calculated according to Brazilian standards resulted in a carbon footprint approximately 17.7% lower than the use of the chemical fertilization mix, with similar productivity in both cases. The transportation of biosolids to the experimental area was responsible for the majority of emissions associated with the use of biosolids. Urea synthesis was the largest contributor to emissions resulting from the use of commercial chemical fertilizer, accounting for 73.6% of total emissions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-017-6406-4