Molecular docking of heparin oligosaccharides with Hep-II heparin-binding domain of fibronectin reveals an interplay between the different positions of sulfate groups

Fibronectin is a major component of the extracellular matrix and serves as support for cell adhesion and migration. Heparin and heparan sulfates (HS) have been reported to be high-affinity ligands for fibronectin. The strongest heparin/HS-binding site, named Hep-II, is located in the C-terminal repe...

Full description

Saved in:
Bibliographic Details
Published inGlycoconjugate journal Vol. 31; no. 2; pp. 161 - 169
Main Authors Carpentier, Mathieu, Denys, Agnès, Allain, Fabrice, Vergoten, Gérard
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.02.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fibronectin is a major component of the extracellular matrix and serves as support for cell adhesion and migration. Heparin and heparan sulfates (HS) have been reported to be high-affinity ligands for fibronectin. The strongest heparin/HS-binding site, named Hep-II, is located in the C-terminal repeat units FN12-14 of fibronectin. Mutational studies of recombinant fibronectin fragments and elucidation of the X-ray crystallographic structure of Hep-II in complex with heparin allowed localizing the main heparin/HS-binding site in FN13 to two parallel amino acid clusters: R1697, R1698, R1700 and R1714, R1716, R1745. Heparin, which is more sulfated than HS, is a better ligand for fibronectin, indicating that the sulfate density is important for the interactions. However, other studies demonstrated that the position of sulfate groups is also critical for high-affinity binding of the polysaccharides to fibronectin. In the current work, we used molecular docking of Hep-II domain of fibronectin with a series of differently sulfated dodecasaccharides of heparin to determine the implication of each sulfate position in the interaction. By using this approach, we confirmed the implication of R1697, R1698, R1700 and R1714 and we identified other amino acids possibly involved in the interaction. We also confirmed a hierarchic involvement of sulfate position as follows: 2S >> 6S > NS. Interestingly, the formation of stable complexes required a mutual adaptation between Hep-II domain and oligosaccharides, which was different according to the pattern of sulfation. Finally, we demonstrated that 3- O -sulfation of heparin stabilized even more the complex with Hep-II by creating new molecular interactions. Collectively, our models point out the complexity of the molecular interactions between heparin/HS and fibronectin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0282-0080
1573-4986
DOI:10.1007/s10719-013-9512-8