Effect of sucralfate against hydrochloric acid-induced dental erosion
Objective Devising effective measures for the prevention of hydrochloric acid (HCl)-induced erosion is of great significance. This is even more important in dentine, in which products have limited diffusion. Therefore, agents that can bind to proteins forming an acid-resistant gel-like coat, such as...
Saved in:
Published in | Clinical oral investigations Vol. 23; no. 5; pp. 2365 - 2370 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objective
Devising effective measures for the prevention of hydrochloric acid (HCl)-induced erosion is of great significance. This is even more important in dentine, in which products have limited diffusion. Therefore, agents that can bind to proteins forming an acid-resistant gel-like coat, such as sucralfate, may stand out as a promising alternative. This study investigated the protective effect of sucralfate suspensions against HCl-induced dental erosion.
Materials and methods
In the first experiment, hydroxyapatite (HAp) crystals were pre-treated with a commercial sucralfate suspension (CoSS, pH 5.9), a stannous-containing sodium fluoride solution (NaF/SnCl
2
pH 4.5), two prepared sucralfate suspensions (PrSS, pH 5.9 and 4.5), or deionized water (DI, control). HAp dissolution was measured using a pH-stat system. In a subsequent experiment, embedded/polished enamel and root dentine slabs were allocated into five groups to be treated with one of the tested substances prior to and during erosion-remineralization cycles (HCl-2 min + artificial saliva 60 min, two times per day, 5 days). Surface loss was assessed profilometrically. Data were analyzed by ANOVA and Tukey’s tests.
Results
HAp dissolution was as follows: NaF/SnCl
2
< CoSS < PrSS/pH 4.5, while PrSS/pH 5.9 = DI and both did not differ from CoSS and PrSS/pH 4.5. In enamel, surface loss did not differ between CoSS and PrSS/pH 4.5, with both having lower surface loss than PrSS/pH 5.9 and DI and NaF/SnCl
2
differing only from DI. In root dentine, surface loss was as follows: CoSS < PrSS/pH 5.9 < (NaF/SnCl
2
= DI), while PrSS/pH 4.5 = CoSS = PrSS/pH 5.9.
Conclusion
Sucralfate suspension provided anti-erosive protection to HCl-induced erosion.
Clinical relevance
Sucralfate may protect teeth against erosion caused by gastric acid. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1432-6981 1436-3771 |
DOI: | 10.1007/s00784-018-2694-5 |