In vitro, contrast agent-based evaluation of the influence of flow diverter size and position on intra-aneurysmal flow dynamics using syngo iFlow

Purpose Treatment of intracranial aneurysm with flow-diverting devices has become widespread in recent years. Despite that, intra-aneurysmal flow changes are yet not fully understood and can lead to different complications. Our aim was an in vitro contrast-based evaluation of the influence of flow d...

Full description

Saved in:
Bibliographic Details
Published inNeuroradiology Vol. 59; no. 12; pp. 1275 - 1283
Main Authors Cattaneo, Giorgio Franco Maria, Ding, Andreas, Jost, Tobias, Ley, Désirée, Mühl-Bennighaus, Ruben, Yilmaz, Umut, Körner, Heiko, Reith, Wolfgang, Simgen, Andreas
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Treatment of intracranial aneurysm with flow-diverting devices has become widespread in recent years. Despite that, intra-aneurysmal flow changes are yet not fully understood and can lead to different complications. Our aim was an in vitro contrast-based evaluation of the influence of flow diverter size and position on intra-aneurysmal flow dynamics. Methods Flow-diverting devices with different sizes (diameters 4.0, 4.5, and 6.0 mm) were deployed in seven silicone aneurysm models at different positions relative to the aneurysm neck (proximal, central, distal). Using syngo iFlow, we defined quantitative evaluation criteria based on contrast medium intensity and performed a flow evaluation. Results Intra-aneurysmal flows were heavily dependent on both size and position of flow-diverting devices at the aneurysm neck. We observed a higher peak intensity delay and intra-aneurysmal washout delay with the centrally placed 4.0- and 4.5-mm device, respectively, compared to the proximal and distal positions. Especially distally placed 4.0-mm devices led to an earlier filling of the aneurysm and increased intra-aneurysmal contrast agent intensity compared to the parent vessel, due to a potential endoleak. Conclusions Not only size but also position of flow-diverting devices have a considerable impact on the intra-aneurysmal flow dynamics. The suggested evaluation criteria allowed a quantitative comparison of flow-diverting effect using syngo iFlow and could represent an efficient tool for predicting flow diversion pre-procedurally.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0028-3940
1432-1920
DOI:10.1007/s00234-017-1903-2