Design, Modeling, and Performance Analysis of Multi-Antenna Heterogeneous Cellular Networks

This paper presents a stochastic geometry-based framework for the design and analysis of downlink multi-user multiple-input multiple-output (MIMO) heterogeneous cellular networks with linear zero-forcing transmit precoding and receive combining, assuming Rayleigh fading channels and perfect channel...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 64; no. 7; pp. 3104 - 3118
Main Authors Shojaeifard, Arman, Hamdi, Khairi Ashour, Alsusa, Emad, So, Daniel K. C., Jie Tang, Kai-Kit Wong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a stochastic geometry-based framework for the design and analysis of downlink multi-user multiple-input multiple-output (MIMO) heterogeneous cellular networks with linear zero-forcing transmit precoding and receive combining, assuming Rayleigh fading channels and perfect channel state information. The generalized tiers of base stations may differ in terms of their Poisson point process spatial density, number of transmit antennas, transmit power, artificial-biasing weight, and number of user equipments served per resource block. The spectral efficiency of a typical user equipped with multiple receive antennas is characterized using a non-direct moment-generating-function-based methodology with closed-form expressions of the useful received signal and aggregate network interference statistics systematically derived. In addition, the area spectral efficiency is formulated under different space-division multiple-access and single-user beamforming transmission schemes. We examine the impact of different cellular network deployments, propagation conditions, antenna configurations, and MIMO setups on the achievable performance through theoretical and simulation studies. Based on the state-of-the-art system parameters, the results highlight the inherent limitations of baseline single-input single-output transmission and conventional sparse macro-cell deployment, as well as the promising potential of multi-antenna communications and small-cell solution in interference-limited cellular environments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2016.2572187