‘Nano-immuno test’ for the detection of live Mycobacterium avium subspecies paratuberculosis bacilli in the milk samples using magnetic nano-particles and chromogen

Early rapid detection of Mycobacterium avium subspecies paratuberculosis (MAP) bacilli in milk samples is the major challenge since traditional culture method is time consuming and laboratory dependent. We report a simple, sensitive and specific nano-technology based ‘Nano-immuno test’ capable of de...

Full description

Saved in:
Bibliographic Details
Published inVeterinary research communications Vol. 42; no. 3; pp. 183 - 194
Main Authors Singh, Manju, Singh, Shoor Vir, Gupta, Saurabh, Chaubey, Kundan Kumar, Stephan, Bjorn John, Sohal, Jagdip Singh, Dutta, Manali
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Early rapid detection of Mycobacterium avium subspecies paratuberculosis (MAP) bacilli in milk samples is the major challenge since traditional culture method is time consuming and laboratory dependent. We report a simple, sensitive and specific nano-technology based ‘Nano-immuno test’ capable of detecting viable MAP bacilli in the milk samples within 10 h. Viable MAP bacilli were captured by MAP specific antibody-conjugated magnetic nano-particles using resazurin dye as chromogen. Test was optimized using true culture positive (10-bovine and 12-goats) and true culture negative (16-bovine and 25-goats) raw milk samples. Domestic livestock species in India are endemically infected with MAP. After successful optimization, sensitivity and specificity of the ‘nano-immuno test’ in goats with respect to milk culture was 91.7% and 96.0%, respectively. Whereas, it was 90.0% (sensitivity) and 92.6% (specificity) with respect to IS 900 PCR. In bovine milk samples, sensitivity and specificity of ‘nano-immuno test’ with respect to milk culture was 90.0% and 93.7%, respectively. However, with respect to IS 900 PCR, the sensitivity and specificity was 88.9% and 94.1%, respectively. Test was validated with field raw milk samples (goats-258 and bovine-138) collected from domestic livestock species to detect live/viable MAP bacilli. Of 138 bovine raw milk samples screened by six diagnostic tests, 81 (58.7%) milk samples were positive for MAP infection in one or more than one diagnostic tests. Of 81 (58.7%) positive bovine raw milk samples, only 24 (17.4%) samples were detected positive for the presence of viable MAP bacilli. Of 258 goats raw milk samples screened by six diagnostic tests, 141 (54.6%) were positive for MAP infection in one or more than one test. Of 141 (54.6%) positive raw milk samples from goats, only 48 (34.0%) were detected positive for live MAP bacilli. Simplicity and efficiency of this novel ‘nano-immuno test’ makes it suitable for wide-scale screening of milk samples in the field. Standardization, validation and re-usability of functionalized nano-particles and the test was successfully achieved in field samples. Test was highly specific, simple to perform and easy to read by naked eyes and does not require laboratory support in the performance of test. Test has potential to be used as screening test to estimate bio-load of MAP in milk samples at National level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0165-7380
1573-7446
DOI:10.1007/s11259-018-9721-5