Bimetallic Cu5Zn8 alloy-embedded hollow porous carbon nanocubes derived from 3D-Cu/ZIF-8 as efficient electrocatalysts for environmental pollutant detection in water bodies
Excessive use of nitrofurantoin (NFT) and its residues can be harmful to the ecosystem, and to mitigate this, rapid and cost-effective detection of NFT in water bodies is needed. In this regard, we prepared a three-dimensional (3D) copper-zeolitic imidazole framework (Cu/ZIF-8)-derived bimetallic Cu...
Saved in:
Published in | Environmental research Vol. 216; no. Pt 2; p. 114609 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Excessive use of nitrofurantoin (NFT) and its residues can be harmful to the ecosystem, and to mitigate this, rapid and cost-effective detection of NFT in water bodies is needed. In this regard, we prepared a three-dimensional (3D) copper-zeolitic imidazole framework (Cu/ZIF-8)-derived bimetallic Cu5Zn8 alloy-embedded hollow porous carbon nanocubes (Cu5Zn8/HPCNC) for electrochemical detection of NFT. The resultant material is characterized using suitable spectrophotometry and voltammetry methods. Cu5Zn8/HPCNC is an effective electrocatalyst with high electrical conductivity and a fast electron transfer rate. It also has more catalytic active sites for improved electrochemical reduction of NFT. Fabricated Cu5Zn8/HPCNC-modified screen-printed electrode (SPE) for NFT reduction have a wide linear range with a low detection limit, and high sensitivity (15.343 μA μМ–1 cm–2), appreciable anti-interference ability with related nitro compounds, storage stability, reproducibility, and repeatability. Also, the practicability of Cu5Zn8/HPCNC/SPE can be successfully employed in NFT monitoring in water bodies (drinking water, pond water, river water, and tap water) with satisfactory recoveries.
•3D-Cu/ZIF-8 derived bimetallic Cu5Zn8/hollow porous carbon nanocubes were prepared.•The synthesis technique is very simple, cost-effective, and eco-friendly.•The synergistic effect of Cu and Zn enhances the sensing performance of Cu5Zn8/HPCNC.•Broad linear range, low LOD, and high sensitivity were achieved for NFT detection.•The feasibility of Cu5Zn8/HPCNC/SPE was demonstrated in water bodies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2022.114609 |