Investigation on the effect of dielectrics during micro-electro-discharge machining of Ti-6Al-4V

Machining of micro-holes using micro-electro-discharge machining (micro-EDM) is an important field of micro-manufacturing technique. Micro-holes are essential features in optical devices, medical instruments, and automobile engine parts. Micro-EDM has been considered as the best non-traditional mach...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 95; no. 1-4; pp. 861 - 874
Main Authors Tiwary, A. P., Pradhan, B. B., Bhattacharyya, B.
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Machining of micro-holes using micro-electro-discharge machining (micro-EDM) is an important field of micro-manufacturing technique. Micro-holes are essential features in optical devices, medical instruments, and automobile engine parts. Micro-EDM has been considered as the best non-traditional machining technique for generating micro-holes on high strength temperature resistant, and difficult to machine advanced materials such as Ti-6Al-4V. Ti-6Al-4V is a widely used material in aerospace and chemical industries. However, machining of micro-holes on Ti-6Al-4V using micro-EDM process is not fully explored. In this study, emphasis has been made to experimentally investigate the influence of various types of dielectrics, such as DEF-92 (EDM oil), pure deionized water, and Cu powder mixed deionized water on micro-EDM process response parameters, such as material removal rate (MRR), tool wear rate (TWR), overcut (OC), and taper during micro-hole machining of Ti-6Al-4V. It is observed that Cu powder mixed deionized water significantly improves the machining performance of the micro-EDM process. Furthermore, the machined profile and topography of the micro-hole obtained with Cu powder mixed deionized water is found to be better as compared to those machined with EDM oil or pure deionized water.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-017-1231-z