Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI

Purpose Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data ac...

Full description

Saved in:
Bibliographic Details
Published inMolecular imaging and biology Vol. 20; no. 3; pp. 492 - 500
Main Authors Behr, Spencer C., Bahroos, Emma, Hawkins, Randall A., Nardo, Lorenzo, Ravanfar, Vahid, Capbarat, Emily V., Seo, Youngho
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. Procedures Whole-body 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUV max and SUV mean ) of normal tissues and lesions detected were measured and compared. Results Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUV mean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of – 18 ± 28 % ( p  < 0.001), − 16 ± 29 % ( p  = 0.001), − 16 ± 31 % ( p  = 0.002), − 14 ± 35 % ( p  < 0.001), and − 13 ± 34 % ( p  = 0.002), respectively. SUV max and SUV peak values of all lesions were higher and statistically significant ( p  < 0.05) for 4, 2, 1, 0.50, and 0.25 min/bed PET/MR datasets. Conclusion High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times reduction in either injection dose for the same time or total scan time for the same injected dose. This “ultra-sensitivity” PET system provides a path to clinically acceptable extremely low-dose FDG PET studies (e.g., sub 1 mCi injection or sub-mSv effective dose) or PET studies as short as 1 min/bed (e.g . , 6 min of total scan time) to cover whole body without compromising diagnostic performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1536-1632
1860-2002
DOI:10.1007/s11307-017-1145-z