Automated detection of vulnerable plaque in intravascular ultrasound images

Acute coronary syndrome (ACS) is a syndrome caused by a decrease in blood flow in the coronary arteries. The ACS is usually related to coronary thrombosis and is primarily caused by plaque rupture followed by plaque erosion and calcified nodule. Thin-cap fibroatheroma (TCFA) is known to be the most...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 57; no. 4; pp. 863 - 876
Main Authors Jun, Tae Joon, Kang, Soo-Jin, Lee, June-Goo, Kweon, Jihoon, Na, Wonjun, Kang, Daeyoun, Kim, Dohyeun, Kim, Daeyoung, Kim, Young-Hak
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Acute coronary syndrome (ACS) is a syndrome caused by a decrease in blood flow in the coronary arteries. The ACS is usually related to coronary thrombosis and is primarily caused by plaque rupture followed by plaque erosion and calcified nodule. Thin-cap fibroatheroma (TCFA) is known to be the most similar lesion morphologically to a plaque rupture. In this paper, we propose methods to classify TCFA using various machine learning classifiers including feed-forward neural network (FNN), K -nearest neighbor (KNN), random forest (RF), and convolutional neural network (CNN) to figure out a classifier that shows optimal TCFA classification accuracy. In addition, we suggest pixel range–based feature extraction method to extract the ratio of pixels in the different region of interests to reflect the physician’s TCFA discrimination criteria. Our feature extraction method examines the pixel distribution of the intravascular ultrasound (IVUS) image at a given ROI, which allows us to extract general characteristics of the IVUS image while simultaneously reflecting the different properties of the vessel’s substances such as necrotic core and calcified nodule depending on the brightness of the pixel. A total of 12,325 IVUS images were labeled with corresponding optical coherence tomography (OCT) images to train and evaluate the classifiers. We achieved 0.859, 0.848, 0.844, and 0.911 area under the ROC curve (AUC) in the order of using FNN, KNN, RF, and CNN classifiers. As a result, the CNN classifier performed best and the top 10 features of the feature-based classifiers (FNN, KNN, RF) were found to be similar to the physician’s TCFA diagnostic criteria. Graphical Abstract AUC result of proposed classifiers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0140-0118
1741-0444
DOI:10.1007/s11517-018-1925-x