Diagnosis of Recurrent Fracture in a Pediatric Cohort

Significant fracture history in children is defined as having at least one vertebral fracture, at least 2 fractures by age 10, or at least 3 fractures by age 19. Between September 2011 and December 2014, clinical data were collected on children with a significant fracture history that attended a maj...

Full description

Saved in:
Bibliographic Details
Published inCalcified tissue international Vol. 103; no. 5; pp. 529 - 539
Main Authors Fiscaletti, M., Coorey, C. P., Biggin, A., Briody, J., Little, D. G., Schindeler, A., Munns, C. F.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Significant fracture history in children is defined as having at least one vertebral fracture, at least 2 fractures by age 10, or at least 3 fractures by age 19. Between September 2011 and December 2014, clinical data were collected on children with a significant fracture history that attended a major Australian children’s hospital. Fifty-six patients were identified as having 305 fractures in total, including 44 vertebral fractures. 18% of patients (10/56) were diagnosed with osteogenesis imperfecta (OI) by a bone health expert, molecular testing or both, and they sustained 23% of all fractures (71/305). Analysis of serum bone biochemistry showed all median values to be within a normal range and no clinically significant differences between patients with and without OI. The DXA and pQCT derived bone mineral density (BMD) and bone mineral content (BMC) Z scores were reduced overall. DXA derived total body and lumbar spine areal BMD-for-age and BMC-for-age Z scores were significantly lower in children who had vertebral fractures or who were later diagnosed with OI. Similarly, pQCT performed on radii and tibiae showed Z scores significantly less than zero. pQCT-derived limb muscle cross sectional area Z scores were significantly lower in the OI subgroup. In conclusion, this study describes the bone phenotype of children referred to a tertiary hospital clinic for recurrent fractures and highlights a subset of children with previously undiagnosed OI, but a larger cohort without classic OI. Thus it can be clinically challenging to differentiate between children with OI type 1 (mild phenotype) and non-OI children without bone densitometry and genetic testing. We conclude that recurrent fractures in children should prompt a comprehensive bone and systemic health assessment to eliminate an underlying pathology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-018-0449-6