effect of different tree species on the chemical and microbial properties of reclaimed mine soils

The chemical and microbial properties of afforested mine soils are likely to depend on the species composition of the introduced vegetation. This study compared the chemical and microbial properties of organic horizons and the uppermost mineral layers in mine soils under pure pine (Pinus sylvestris)...

Full description

Saved in:
Bibliographic Details
Published inBiology and fertility of soils Vol. 46; no. 6; pp. 555 - 566
Main Authors Chodak, Marcin, Niklińska, Maria
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.08.2010
Springer-Verlag
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The chemical and microbial properties of afforested mine soils are likely to depend on the species composition of the introduced vegetation. This study compared the chemical and microbial properties of organic horizons and the uppermost mineral layers in mine soils under pure pine (Pinus sylvestris), birch (Betula pendula), larch (Larix decidua), alder (Alnus glutinosa), and mixed pine-alder and birch-alder forest stands. The studied properties included soil pH, content of organic C (Corg) and total N (Nt), microbial biomass (Cmic), basal respiration, nitrogen mineralization rate (Min-N), and the activities of dehydrogenase, acid phosphomonoesterase, and urease. Near-infrared spectroscopy (NIR) was used to detect differences in the chemical composition of soil organic matter under the studied forest stands. There were significant differences in Corg and Nt contents between stands in both O and mineral soil horizons and also in the chemical composition of the accumulated organic matter, as indicated by NIR spectra differences. Alder was associated with the largest Corg and Nt accumulation but also with a significant decrease of pH in the mineral soil. Microbial biomass, respiration, the percentage of Corg present as Cmic, Min-N, and dehydrogenase activity were the highest under the birch stand, indicating a positive effect of birch on soil microflora. Admixture of alder to coniferous stand increased basal respiration, Min-N, and activities of dehydrogenase and acid phosphomonoesterase as compared with the pure pine stand. In the O horizon, soil pH and Nt content had the most important effects on all microbial properties. In this horizon, the activities of urease and acid phosphomonoesterase did not depend on microbial biomass. In the mineral layer, however, the amount of accumulated C and microbial biomass were of primary importance for the enzyme activities.
Bibliography:http://dx.doi.org/10.1007/s00374-010-0462-z
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0178-2762
1432-0789
DOI:10.1007/s00374-010-0462-z