Semi-continuous anaerobic co-digestion of flotation sludge from broiler chicken slaughter and sweet potato: Nutrients and energy recovery

Energy production based on the proper allocation of environmental liabilities is in line with the concept of sustainability. Flotation sludge (S) is a type of waste derived from the physical treatment of the wastewater generated in significant quantities during chicken slaughter in Brazil. If not tr...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 683; pp. 773 - 781
Main Authors Damaceno, Felippe Martins, Buligon, Eduardo L., Pires Salcedo Restrepo, Juan C., Chiarelotto, Maico, Niedzialkoski, Rosana Krauss, de Mendonça Costa, Luiz Antonio, de Lucas Junior, Jorge, de Mendonça Costa, Monica Sarolli Silva
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Energy production based on the proper allocation of environmental liabilities is in line with the concept of sustainability. Flotation sludge (S) is a type of waste derived from the physical treatment of the wastewater generated in significant quantities during chicken slaughter in Brazil. If not treated, this wastewater may contribute to pollution, but further treatment provides clean energy and nutrient recycling. The present study aimed at evaluating the reduction of (S) organic load by means of mono and co-digestion with sweet potatoes (P) while promoting its conversion into energy (methane) and nutrients (digestate). Semi-continuous reactors (60 L capacity) were used with a hydraulic retention time of 25 days. The reactors were fed daily with 2.4 L consisting of 60% digestate recirculation, 40% non-chlorinated water and 4.5% total solids (TS). Using nine reactors and six progressive periods, eleven conditions were evaluated with three replicates each. The percentages of (P) and (S) varied from 0 to 100. The best observed condition in terms of energy recovery and TS removal was 60% of P + 40% of S (p ≤ 0.05), as it presented values of at least an increase of 92% in total biogas volume, an increase of 123% in specific methane production, an increase of 98% in specific methane yield and an increase of 44% in TS removal efficiency compared to mono-digestions. The fertilizer potential of the digestate generated in the different conditions was calculated and evaluated according to the area of (P) production. The results varied from 3.6 to 10.8 ha of (P) using 100 m3 of digestate. A multivariate analysis showed that higher amounts of (P) in substrate composition favor energy recycling while higher concentrations of (S) enhance the production of a digestate with valuable agronomic characteristics. [Display omitted] •ACoD of flotation sludge (S) and sweet potato (P) refuse was investigated.•Ammonia and volatile acidity increase due to the sludge addition.•The digestate recirculation provided the alkalinity of the system.•The digestates contained high levels of N and P, and phytostimulating effect.•The 60P40S condition is more adequate for energy and nutrient recovery.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.05.314