NADPH-Dependent Metabolism of Estrone by Human Liver Microsomes

We characterized the NADPH-dependent metabolism of estrone (E1) by liver microsomes of 21 male and 12 female human subjects. The structures of 11 hydroxylated or keto metabolites of E1 formed by human liver microsomes were identified by chromatographic and mass spectrometric analyses. 2-Hydroxylatio...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 300; no. 3; pp. 838 - 849
Main Authors Lee, Anthony J., Mills, Laura H., Kosh, Joseph W., Conney, Allan H., Zhu, Bao Ting
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2002
American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We characterized the NADPH-dependent metabolism of estrone (E1) by liver microsomes of 21 male and 12 female human subjects. The structures of 11 hydroxylated or keto metabolites of E1 formed by human liver microsomes were identified by chromatographic and mass spectrometric analyses. 2-Hydroxylation of E1 was the dominant metabolic pathway with all human liver microsomes tested. E1 is more prone to form catechol estrogens (particularly 4-OH-E1) than 17β-estradiol (E2) and the average ratio of E1 4-hydroxylation to 2-hydroxylation (0.24) was slightly higher than the ratio of E2 4- to 2-hydroxylation (0.20,P < 0.001). An unidentified monohydroxylated E1 metabolite (y-OH-E1) was found to be one of the major metabolites formed by human liver microsomes of both genders. 6β-OH-E1, 16α-OH-E1, and 16β-OH-E1 were also formed in significant quantities. 16α-Hydroxylation was not a major pathway for E1 metabolism. The overall profiles for the E1 metabolites formed by male and female human liver microsomes were similar, and their average rates were not significantly different. Hepatic CYP3A4/5 activity in both male and female liver microsomes correlated strongly with the rates of formation of several hydroxyestrogen metabolites. The dominant role of hepatic CYP3A4 and CYP3A5 in the formation of these hydroxyestrogen metabolites was further confirmed by incubations of human CYP3A4 or CYP3A5 with [3H]E1 and NADPH. Notably, human CYP3A5 has very high relative activity for E1 4-hydroxylation, exceeding its activity for E1 2-hydroxylation by ∼100%. It will be of interest to determine the potential biological functions associated with any of the E1 metabolites identified in our present study.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.300.3.838