ON THE MAGNITUDES OF COMPACT SETS IN EUCLIDEAN SPACES
The notion of the magnitude of a metric space was introduced by Leinster and developed in works by Leinster, Meckes and Willerton, but the magnitudes of familiar sets in Euclidean space are only understood in relatively few cases. In this paper we study the magnitudes of compact sets in Euclidean sp...
Saved in:
Published in | American journal of mathematics Vol. 140; no. 2; pp. 449 - 494 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Baltimore
Johns Hopkins University Press
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The notion of the magnitude of a metric space was introduced by Leinster and developed in works by Leinster, Meckes and Willerton, but the magnitudes of familiar sets in Euclidean space are only understood in relatively few cases. In this paper we study the magnitudes of compact sets in Euclidean spaces. We first describe the asymptotics of the magnitude of such sets in both the small- and large-scale regimes. We then consider the magnitudes of compact convex sets with nonempty interior in Euclidean spaces of odd dimension, and relate them to the boundary behaviour of solutions to certain naturally associated higher order elliptic boundary value problems in exterior domains. We carry out calculations leading to an algorithm for explicit evaluation of the magnitudes of balls, and this establishes the convex magnitude conjecture of Leinster and Willerton in the special case of balls in dimension three. In general the magnitude of an odd-dimensional ball is a rational function of its radius, thus disproving the general form of the Leinster-Willerton conjecture. In addition to Fourier-analytic and PDE techniques, the arguments also involve some combinatorial considerations. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2018.0011 |