Ambient noise surface wave tomography of marginal seas in east Asia

We conducted ambient noise tomography in east Asia, including the Chinese coastal provinces, Korea Peninsular, Japan, Taiwan Island, and marginal seas in between. We retrieved Rayleigh Green’s functions from inter-station correlations of 12 months of continuous waveform data at 573 broadband station...

Full description

Saved in:
Bibliographic Details
Published inEarth and planetary physics Vol. 1; no. 1; pp. 13 - 25
Main Authors Wang, Qing, Song, XiaoDong, Ren, JianYe
Format Journal Article
LanguageEnglish
Published Science Press 01.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We conducted ambient noise tomography in east Asia, including the Chinese coastal provinces, Korea Peninsular, Japan, Taiwan Island, and marginal seas in between. We retrieved Rayleigh Green’s functions from inter-station correlations of 12 months of continuous waveform data at 573 broadband stations in the region. We obtained group and phase velocity dispersion curves and dispersion maps for periods from 10 to 70 s and inverted for 3D Vs model of the crust and uppermost mantle. Moho and lithosphere thickness were derived from the 3D model. We observed three prominent low velocity zones in the upper mantle, two in the accretionary wedges above the Pacific and Philippine subduction slabs and one beneath the Changbai Mountain region. The crust and lithosphere are generally thin in the region. The velocity anomalies, crustal thickness, and lithosphere thickness all show a similar trend in NNE-SSW direction. The lithosphere shows a striking " sausage”-type structure with alternating thickness. The crust thickness and lithosphere thickness both decrease progressively from NW to SE direction, which coincides with the distribution of episodic magmatism in SE China. We propose that the subduction of paleo-Pacific slab and its rollback were mainly responsible for the crustal and lithosphere extension and the mantle lithosphere removal in east Asia.
ISSN:2096-3955
2096-3955
DOI:10.26464/epp2017003