Mobility of a 5|7 defect in carbon nanotubes

The movement of a 5|7 defect in the plastic deformations of a carbon nanotube (CNT) plays the role of dislocation glide in the plastic deformations of metals. This work is concerned with the atomic shift mechanism of the 5|7 defect and the energy barrier when the CNT is subjected to tensile loading....

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 22; no. 10; p. 105707
Main Authors Lee, Youngmin, Han, Jihoon, Lee, In-Ho, Im, Seyoung
Format Journal Article
LanguageEnglish
Published England IOP Publishing 11.03.2011
Online AccessGet full text

Cover

Loading…
More Information
Summary:The movement of a 5|7 defect in the plastic deformations of a carbon nanotube (CNT) plays the role of dislocation glide in the plastic deformations of metals. This work is concerned with the atomic shift mechanism of the 5|7 defect and the energy barrier when the CNT is subjected to tensile loading. Action-derived molecular dynamics (ADMD) is applied to find the minimum energy path and the energy barrier. It is found that the tensile loads make it easy for the 5|7 defect to glide, and lower the energy barrier. The minimum load level that makes a 5|7 defect glide freely with no energy barrier in the presence of an adatom is obtained.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/22/10/105707