Aperture-coupled patch antenna on UC-PBG substrate

The recently developed uniplanar compact photonic bandgap (UC-PBG) substrate is successfully used to reduce surface-wave losses for an aperture-coupled fed patch antenna on a thick high dielectric-constant substrate. The surface-wave dispersion diagram of the UC-PBG substrate has been numerically co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 47; no. 11; pp. 2123 - 2130
Main Authors Coccioli, R., Fei-Ran Yang, Kuang-Ping Ma, Itoh, T.
Format Journal Article
LanguageEnglish
Published IEEE 01.11.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The recently developed uniplanar compact photonic bandgap (UC-PBG) substrate is successfully used to reduce surface-wave losses for an aperture-coupled fed patch antenna on a thick high dielectric-constant substrate. The surface-wave dispersion diagram of the UC-PBG substrate has been numerically computed for two different substrate thickness (25 and 50 mil) and found to have a complete stopband in the frequency range of 10.9-13.5 and 11.4-12.8 GHz, respectively. The thicker substrate is then used to enhance broadside gain of a patch antenna working in the stopband at 12 GHz. Computed results and measured data show that, due to effective surface-wave suppression, the antenna mounted on the UC-PBG substrate has over 3-dB higher gain in the broadside direction than the same antenna etched on a grounded dielectric slab with same thickness and dielectric constant. Cross-polarization level remains 13 dB down the co-polar component level for both E- and H-planes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/22.798008