A Modularized Two-Stage Charge Equalizer With Cell Selection Switches for Series-Connected Lithium-Ion Battery String in an HEV

In lithium-ion battery system for hybrid electric vehicle, charge equalizer is essential to enhance the battery life cycle and safety. However, for a large number of battery cells, a conventional equalizer has the difficulty of individual cell balancing and the implementation size problem as well as...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 27; no. 8; pp. 3764 - 3774
Main Authors KIM, Chol-Ho, KIM, Moon-Young, PARK, Hong-Sun, MOON, Gun-Woo
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In lithium-ion battery system for hybrid electric vehicle, charge equalizer is essential to enhance the battery life cycle and safety. However, for a large number of battery cells, a conventional equalizer has the difficulty of individual cell balancing and the implementation size problem as well as the cost. Moreover, it shows high voltage stress of electrical elements in the equalization converter due to the high voltage of battery pack. To improve these drawbacks, this paper proposes a modularized two-stage charge equalizer with cell selection switches. The proposed circuit employs the two-stage dc-dc converter to reduce the voltage stress of equalization converter. Contrary to conventional method, the proposed equalizer can achieve the individual cell balancing only through the cell selection switches. With the two-stage converter and the cell selection switches, the proposed equalizer leads to the great size reduction with lower cost which brings advancement of individual cell balancing in a large number of battery cells. In this paper, a prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results are presented to verify that the proposed equalization method has a good cell balancing performance showing the low voltage stress and small size with the lower cost.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2012.2185248