Optimization of the composite enzyme extraction of polysaccharide from Erythronium sibiricum bulb and its immunoregulatory activities

An efficient compound enzyme extraction process was developed and optimized to extract the polysaccharide from Erythronium sibiricum bulb via response surface methodology. The polysaccharide E2P was obtained. Then, the preliminary characteristics of E2P were determined via colorimetry and chromatogr...

Full description

Saved in:
Bibliographic Details
Published inPreparative biochemistry & biotechnology Vol. 52; no. 6; pp. 681 - 690
Main Authors Zhou, Yue, Yan, Shujing, Gao, Shanshan, Guo, Wei, Xie, Xiangyun, Kawul, Gulibahar, Wang, Mei, Feng, Yue, Chen, Chunli
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 01.07.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An efficient compound enzyme extraction process was developed and optimized to extract the polysaccharide from Erythronium sibiricum bulb via response surface methodology. The polysaccharide E2P was obtained. Then, the preliminary characteristics of E2P were determined via colorimetry and chromatography. Additionally, the immunoregulatory activities of E2P and another polysaccharide (ESBP, extracted using the hot water method) were compared. The optimized extraction results were as follows: temperature (54.56 °C), time (2.52 h), pH (6.53), and enzyme concentration ratio (0.5% cellulase:1.5% amylase). The yield (64.18% ± 2.91%) obtained under the aforementioned conditions was considerably higher than the yield of ESBP (37.25% ± 0.17%). The total sugar, uronic acid, starch, and protein contents of E2P were 81.77% ± 2.84%, 3.31% ± 0.45%, 3.29% ± 0.01%, and 0.24% ± 0.02%, respectively. The HPLC result suggested that the predominant monosaccharides of E2P included glucose, galactose, and arabinose, with a molar ratio of 543.2:1:1.8. The in vitro tests in RAW264.7 cells indicated that ESBP exhibited better immunomodulatory activities than E2P. In particular, ESBP can promote the proliferation, phagocytosis, and cytokine secretion abilities of cytokines, such as nitric oxide, tumor necrosis factor-α, and interleukin (IL)-1β of RAW264.6 cells. By contrast, E2P can only promote phagocytosis ability and the secretion of IL-1β.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1082-6068
1532-2297
DOI:10.1080/10826068.2021.1986720