Reoxygenation of Hypoxic Glioblastoma Multiforme Cells Potentiates the Killing Effect of an Interleukin-13-Based Cytotoxin

Purpose: Hypoxia is a cause for resistance to cancer therapies. Molecularly targeted recombinant cytotoxins have shown clinical efficacy in the treatment of patients with primary brain tumors, glioblastoma multiforme, but it is not known whether hypoxia influences their antitumor effect. Experimenta...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 15; no. 1; pp. 160 - 168
Main Authors Liu, Tie Fu, Cai, Jiaozhong, Gibo, Denise M, Debinski, Waldemar
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: Hypoxia is a cause for resistance to cancer therapies. Molecularly targeted recombinant cytotoxins have shown clinical efficacy in the treatment of patients with primary brain tumors, glioblastoma multiforme, but it is not known whether hypoxia influences their antitumor effect. Experimental Design: We have exposed glioblastoma multiforme cells, such as U-251 MG, U-373 MG, SNB-19, and A-172 MG, to either anoxia or hypoxia and then reoxygenated them while treating with an interleukin (IL)-13-based diphtheria toxin (DT)-containing cytotoxin, DT-IL13QM. We measured the levels of immunoreactive IL-13Rα2, a receptor that mediates IL-13-cytotoxin cell killing, and the levels of active form of furin, a protease that activates the bacterial toxin portion in a cytotoxin. Results: We found that anoxia/hypoxia significantly alters the responsiveness of glioblastoma multiforme cells to DT-IL13QM. Interestingly, bringing these cells back to normoxia caused them to become even more susceptible to the cytotoxin than the cells maintained under normoxia. Anoxia/hypoxia caused a highly prominent decrease in the immunoreactive levels of both IL-13R and active forms of furin, and reoxygenation not only restored their levels but also became higher than that in normoxic glioblastoma multiforme cells. Conclusions: Our results show that a recombinant cytotoxin directed against glioblastoma multiforme cells kills these cells much less efficiently under anoxic/hypoxic conditions. The reoxygenation brings unexpected additional benefit of making glioblastoma multiforme cells even more responsive to the killing effect of a cytotoxin.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-08-2151