Optimal Sensor Placement for Source Localization: A Unified ADMM Approach
Source localization plays a key role in many applications including radar, wireless and underwater communications. Among various localization methods, the most popular ones are Time-Of-Arrival (TOA), Time-Difference-Of-Arrival (TDOA), Angle-Of-Arrival (AOA) and Received Signal Strength (RSS) based....
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 71; no. 4; pp. 4359 - 4372 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Source localization plays a key role in many applications including radar, wireless and underwater communications. Among various localization methods, the most popular ones are Time-Of-Arrival (TOA), Time-Difference-Of-Arrival (TDOA), Angle-Of-Arrival (AOA) and Received Signal Strength (RSS) based. Since the Cramér-Rao lower bounds (CRLB) of these methods depend on the sensor geometry explicitly, sensor placement becomes a crucial issue in source localization applications. In this paper, we consider finding the optimal sensor placements for the TOA, TDOA, AOA and RSS based localization scenarios. We first unify the three localization models by a generalized problem formulation based on the CRLB-related metric. Then a u nified op t imization fra m ework for o ptimal s ensor placemen t (UTMOST) is developed through the combination of the alternating direction method of multipliers (ADMM) and majorization-minimization (MM) techniques. Unlike the majority of the state-of-the-art works, the proposed UTMOST neither approximates the design criterion nor considers only uncorrelated noise in the measurements. It can readily adapt to to different design criteria (i.e. A, D and E-optimality) with slight modifications within the framework and yield the optimal sensor placements correspondingly. Extensive numerical experiments are performed to exhibit the efficacy and flexibility of the proposed framework. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9545 1939-9359 1939-9359 |
DOI: | 10.1109/TVT.2022.3146603 |