Electrical pump & probe and injected carrier losses quantification in Er doped Si slot waveguides
Electrically driven Er(3+) doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er(3+) doped active layers were fabricated in the slot region: a pure SiO(2) and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the el...
Saved in:
Published in | Optics express Vol. 20; no. 27; pp. 28808 - 28818 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optical Society of America
17.12.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electrically driven Er(3+) doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er(3+) doped active layers were fabricated in the slot region: a pure SiO(2) and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er(3+) ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 μW. All these performances suggest the usage of these devices as electro-optical modulators. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.20.028808 |