A high-resolution multi-phase delay-locked loop with offset locking technique
In this work, we propose a new type of high-resolution delay-locked loop (DLL) which achieves the performance of high-resolution output by offset locking techniques without restrictions of intrinsic delay in the delay cell. Compared to traditional multi-phase clock generator, this architecture has t...
Saved in:
Published in | International journal of electronics Vol. 103; no. 10; pp. 1699 - 1712 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.10.2016
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, we propose a new type of high-resolution delay-locked loop (DLL) which achieves the performance of high-resolution output by offset locking techniques without restrictions of intrinsic delay in the delay cell. Compared to traditional multi-phase clock generator, this architecture has the features of small size, low jitters, low-power consumption and high resolution. This DLL has been fabricated in 0.35 μm complementary metal-oxide-semiconductor (CMOS) process. The measured root-mean-square and peak-to-peak jitters are 2.89 ps and 31.1 ps at 250 MHz, respectively. The power dissipation is 68 mW for a supply voltage of 3.3 V. The maximum resolution of this work is 144 p and the intrinsic delay of 0.35 μm CMOS process is 220 ps. Comparing with intrinsic delay, the improvement of maximum resolution is 34.5%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-7217 1362-3060 |
DOI: | 10.1080/00207217.2016.1138524 |