Max-Min Power Control in Downlink Massive MIMO With Distributed Antenna Arrays

In this paper, we investigate optimal downlink power allocation in massive multiple-input multiple-output (MIMO) networks with distributed antenna arrays (DAAs) under correlated and uncorrelated channel fading. In DAA massive MIMO, a base station (BS) consists of multiple antenna sub-arrays. Notably...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 69; no. 2; pp. 740 - 751
Main Authors Akbar, Noman, Bjornson, Emil, Yang, Nan, Larsson, Erik G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0090-6778
1558-0857
1558-0857
DOI10.1109/TCOMM.2020.3033018

Cover

Loading…
More Information
Summary:In this paper, we investigate optimal downlink power allocation in massive multiple-input multiple-output (MIMO) networks with distributed antenna arrays (DAAs) under correlated and uncorrelated channel fading. In DAA massive MIMO, a base station (BS) consists of multiple antenna sub-arrays. Notably, the antenna sub-arrays are deployed in arbitrary locations within a DAA massive MIMO cell. Consequently, the distance-dependent large-scale propagation coefficients are different from a user to these different antenna sub-arrays, which makes power control a challenging problem. We assume that the network operates in time-division duplex mode, where each BS obtains the channel estimates via uplink pilots. Based on the channel estimates, the BSs perform maximum-ratio transmission in the downlink. We then derive a closed-form signal-to-interference-plus-noise ratio (SINR) expression, where the channels are subject to correlated fading. Based on the SINR expression, we propose a network-wide max-min power control algorithm to ensure that each user in the network receives a uniform quality of service. Numerical results demonstrate the performance advantages offered by DAA massive MIMO. For some specific scenarios, DAA massive MIMO can improve the average per-user throughput up to 55%. Furthermore, we demonstrate that channel fading covariance is an important factor in determining the performance of DAA massive MIMO.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
1558-0857
DOI:10.1109/TCOMM.2020.3033018