Max-Min Power Control in Downlink Massive MIMO With Distributed Antenna Arrays
In this paper, we investigate optimal downlink power allocation in massive multiple-input multiple-output (MIMO) networks with distributed antenna arrays (DAAs) under correlated and uncorrelated channel fading. In DAA massive MIMO, a base station (BS) consists of multiple antenna sub-arrays. Notably...
Saved in:
Published in | IEEE transactions on communications Vol. 69; no. 2; pp. 740 - 751 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0090-6778 1558-0857 1558-0857 |
DOI | 10.1109/TCOMM.2020.3033018 |
Cover
Loading…
Summary: | In this paper, we investigate optimal downlink power allocation in massive multiple-input multiple-output (MIMO) networks with distributed antenna arrays (DAAs) under correlated and uncorrelated channel fading. In DAA massive MIMO, a base station (BS) consists of multiple antenna sub-arrays. Notably, the antenna sub-arrays are deployed in arbitrary locations within a DAA massive MIMO cell. Consequently, the distance-dependent large-scale propagation coefficients are different from a user to these different antenna sub-arrays, which makes power control a challenging problem. We assume that the network operates in time-division duplex mode, where each BS obtains the channel estimates via uplink pilots. Based on the channel estimates, the BSs perform maximum-ratio transmission in the downlink. We then derive a closed-form signal-to-interference-plus-noise ratio (SINR) expression, where the channels are subject to correlated fading. Based on the SINR expression, we propose a network-wide max-min power control algorithm to ensure that each user in the network receives a uniform quality of service. Numerical results demonstrate the performance advantages offered by DAA massive MIMO. For some specific scenarios, DAA massive MIMO can improve the average per-user throughput up to 55%. Furthermore, we demonstrate that channel fading covariance is an important factor in determining the performance of DAA massive MIMO. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0090-6778 1558-0857 1558-0857 |
DOI: | 10.1109/TCOMM.2020.3033018 |