Mesoplastics and large microplastics along a use gradient on the Uruguay Atlantic coast: Types, sources, fates, and chemical loads

Plastic pollution is a global problem with great local and regional variability. Plastic litter reaches beaches directly and indirectly through different pathways, due to both terrestrial and marine pressures. In this study, we assess and characterize meso and microplastic pollution on four Uruguaya...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 721; p. 137734
Main Authors Rodríguez, Carolina, Fossatti, Mónica, Carrizo, Daniel, Sánchez-García, Laura, Teixeira de Mello, Franco, Weinstein, Federico, Lozoya, Juan Pablo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plastic pollution is a global problem with great local and regional variability. Plastic litter reaches beaches directly and indirectly through different pathways, due to both terrestrial and marine pressures. In this study, we assess and characterize meso and microplastic pollution on four Uruguayan oceanic beaches along a gradient of tourist use within a complex regional coastal marine system. In Punta del Diablo we found a total mean density of 106 items m−2 of different debris (pellets, fragments, and foams) with different polymeric compositions, and diverse persistent bioaccumulative and toxic chemicals (PAHs, PCBs, OCs, heavy metals). However, the trend of plastic debris densities along this gradient was not what was expected. Fabeiro, one of the sites furthest from the urban center, had the highest total mean density of plastics (292 items m−2) suggesting that marine influences (winds, currents, and beach orientation) have a preponderant role in the distribution of micro and mesoplastics. Meanwhile, the density in the urban site (Pueblo) was highest during summer (March, 201 items m−2), 200 times higher than the density observed in winter (July, 1 item m−2). Although this difference could be associated to the peak season (southern summer), the analysis of types of plastics (171 pellets m−2 vs. 8 cigarette butts m−2) suggested a predominance of marine inputs. Seasonal changes in the configuration of the beaches due to natural geomorphological dynamics imply alternating states (Source or Sink of debris) that also affect the final density of plastics in the system. The relative importance of both sources is highly variable throughout the year and understanding them may directly improve beach management and stranded coastal plastic litter cleaning. [Display omitted] •Trend of plastic debris densities along the use gradient were not as expected.•Marine coastal currents are particularly important in the distribution of MPs.•Beach alternate states (Source/Sink) affect the balance of plastics in the beach system.•Could coastal dynamics be a key element for ecosystem-based adaptation (EbA) strategies for stranded plastic litter?
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.137734